Support Vector Machine Based Classification for Hyperspectral Remote Sensing Images after Minimum Noise Fraction Rotation Transformation

Denghui Zhang, Yu Le
{"title":"Support Vector Machine Based Classification for Hyperspectral Remote Sensing Images after Minimum Noise Fraction Rotation Transformation","authors":"Denghui Zhang, Yu Le","doi":"10.1109/ICICIS.2011.39","DOIUrl":null,"url":null,"abstract":"The component selection of minimum noise fraction (MNF) rotation transformation is analyzed in terms of classification accuracy using support vector machine (SVM) as a classifier for hyper spectral image. Five different group of different number of MNF components are evaluated using validation points and validation map. Further evaluation including classification error distribution and separation-class accuracies comparison are performed. The experimental result using AVIRIS hyper spectral data shows that keep about 1/10 MNF components could achieve best accuracies. However, for different target classes, the optimal number of MNF components is variance.","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The component selection of minimum noise fraction (MNF) rotation transformation is analyzed in terms of classification accuracy using support vector machine (SVM) as a classifier for hyper spectral image. Five different group of different number of MNF components are evaluated using validation points and validation map. Further evaluation including classification error distribution and separation-class accuracies comparison are performed. The experimental result using AVIRIS hyper spectral data shows that keep about 1/10 MNF components could achieve best accuracies. However, for different target classes, the optimal number of MNF components is variance.
基于支持向量机的最小噪声旋转变换高光谱遥感图像分类
利用支持向量机(SVM)作为高光谱图像分类器,从分类精度的角度分析了最小噪声分数(MNF)旋转变换的分量选择问题。利用验证点和验证图对五组不同数量的MNF组件进行了评估。进一步的评估包括分类误差分布和分离类精度比较。利用AVIRIS高光谱数据进行的实验结果表明,保留1/10左右的MNF分量可以达到最佳精度。然而,对于不同的目标类别,最优的MNF分量数是方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信