{"title":"Dependence of the optimum length of light doped region of GC SOI nMOSFET with front gate bias","authors":"R. Assalti, M. Pavanello, D. Flandre, M. de Souza","doi":"10.1109/SBMICRO.2014.6940099","DOIUrl":null,"url":null,"abstract":"This work assesses the analog performance of Graded-Channel FD SOI nMOSFET transistors regarding the dependence of gate voltage overdrive over the length of lightly doped region which maximizes the intrinsic voltage gain, unit gain frequency and breakdown voltage. It is shown that the optimum length of lightly doped region depends on the target application of GC devices.","PeriodicalId":244987,"journal":{"name":"2014 29th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 29th Symposium on Microelectronics Technology and Devices (SBMicro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBMICRO.2014.6940099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work assesses the analog performance of Graded-Channel FD SOI nMOSFET transistors regarding the dependence of gate voltage overdrive over the length of lightly doped region which maximizes the intrinsic voltage gain, unit gain frequency and breakdown voltage. It is shown that the optimum length of lightly doped region depends on the target application of GC devices.