Generalized classification rules for entity identification

Umesh S. Bhoskar, Arati Manjaramkar
{"title":"Generalized classification rules for entity identification","authors":"Umesh S. Bhoskar, Arati Manjaramkar","doi":"10.1109/ICRITO.2016.7784951","DOIUrl":null,"url":null,"abstract":"One of the essential tasks in data integration is entity resolution (ER) which will recognize the records that are belonging to the same entity. The entity resolution is referred by many other terms like duplicate detection, pattern matching, etc. Now a days the activities like information integration, information retrieval, crowd sourcing, and pay-as-you-go have involved users to carry out the ER tasks such as to identify whether two entity descriptions are referred to the same entity or not. Previous work of ER involves clustering and comparison approaches which are based on some assumption. The ER gives the poorer quality when such assumptions are not correct. In our approach, we present a new set of entity rules where each rule enumerates all possibilities to identify the correct entity of the records. Additionally, we propose an extended approach (GenR) for efficient and effective rules generation by using a specialized form of term-based entropy measure. We experimentally evaluated the proposed approach using data set with a large no. of records and the data sets with different data characteristics. We report on some promising empirical results which demonstrate performance improvement by using a term-based quality measure.","PeriodicalId":377611,"journal":{"name":"2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRITO.2016.7784951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the essential tasks in data integration is entity resolution (ER) which will recognize the records that are belonging to the same entity. The entity resolution is referred by many other terms like duplicate detection, pattern matching, etc. Now a days the activities like information integration, information retrieval, crowd sourcing, and pay-as-you-go have involved users to carry out the ER tasks such as to identify whether two entity descriptions are referred to the same entity or not. Previous work of ER involves clustering and comparison approaches which are based on some assumption. The ER gives the poorer quality when such assumptions are not correct. In our approach, we present a new set of entity rules where each rule enumerates all possibilities to identify the correct entity of the records. Additionally, we propose an extended approach (GenR) for efficient and effective rules generation by using a specialized form of term-based entropy measure. We experimentally evaluated the proposed approach using data set with a large no. of records and the data sets with different data characteristics. We report on some promising empirical results which demonstrate performance improvement by using a term-based quality measure.
用于实体识别的广义分类规则
数据集成的基本任务之一是实体解析(ER),它将识别属于同一实体的记录。实体解析由许多其他术语指代,如重复检测、模式匹配等。如今,诸如信息集成、信息检索、群体外包和现收现付等活动都涉及到用户来执行ER任务,例如识别两个实体描述是否引用同一实体。以往的ER研究涉及基于某些假设的聚类和比较方法。当这些假设不正确时,急诊室给出的质量较差。在我们的方法中,我们提出了一组新的实体规则,其中每个规则列举了识别记录的正确实体的所有可能性。此外,我们提出了一种扩展方法(GenR),通过使用一种特殊形式的基于项的熵度量来高效地生成规则。我们使用具有较大no的数据集对所提出的方法进行了实验评估。具有不同数据特征的记录和数据集。我们报告了一些有希望的实证结果,这些结果通过使用基于术语的质量度量来证明性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信