Short Term Prediction Framework for Moroccan Stock Market Using Artificial Neural Networks

Badre Labiad, A. Berrado, L. Benabbou
{"title":"Short Term Prediction Framework for Moroccan Stock Market Using Artificial Neural Networks","authors":"Badre Labiad, A. Berrado, L. Benabbou","doi":"10.1145/3289402.3289520","DOIUrl":null,"url":null,"abstract":"In this paper we present a short term forecasting framework for stock markets based on Artificial Neural Networks. We are interested in predicting future trends of stock markets (Up, Down and Unchanged) in the very short term (10 to 60 minutes ahead). We present a framework to efficiently implement different ANN architectures namely Multi-Layers Perceptron (MLP) and the Long Short- Term Memory (LSTM). This framework involves the use of intraday prices data (tick-by-tick data) and a selection of technical indicators as input variables and fixes the issues related to the imbalanced target classes and the non-regularly spaced input data.We conduct different experimentations within the proposed framework on data from the Moroccan stock market.","PeriodicalId":199959,"journal":{"name":"Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289402.3289520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we present a short term forecasting framework for stock markets based on Artificial Neural Networks. We are interested in predicting future trends of stock markets (Up, Down and Unchanged) in the very short term (10 to 60 minutes ahead). We present a framework to efficiently implement different ANN architectures namely Multi-Layers Perceptron (MLP) and the Long Short- Term Memory (LSTM). This framework involves the use of intraday prices data (tick-by-tick data) and a selection of technical indicators as input variables and fixes the issues related to the imbalanced target classes and the non-regularly spaced input data.We conduct different experimentations within the proposed framework on data from the Moroccan stock market.
基于人工神经网络的摩洛哥股市短期预测框架
本文提出了一个基于人工神经网络的股票市场短期预测框架。我们对短期内(提前10到60分钟)预测股票市场的未来趋势(上涨、下跌和不变)感兴趣。我们提出了一个框架来有效地实现不同的神经网络架构,即多层感知器(MLP)和长短期记忆(LSTM)。该框架涉及使用日内价格数据(滴答数据)和选择技术指标作为输入变量,并修复与不平衡目标类别和非规则间隔输入数据相关的问题。我们在提议的框架内对摩洛哥股票市场的数据进行了不同的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信