{"title":"CMOS-Compatible Surface-Micromachined Test Structure for Determination of Thermal Conductivity of Thin Film Materials based on Seebeck Effect","authors":"Z. Wang, P. Fiorini, C. van Hoof","doi":"10.1109/MEMSYS.2009.4805459","DOIUrl":null,"url":null,"abstract":"This paper reports the design, modeling, fabrication and measurement of a CMOS-compatible surface-micromachined test structure for the determination of the thermal conductivity of thin films based on the Seebeck effect. The Seebeck effect-based temperature sensing is more advantageous for thin film materials with a relatively large Seebeck coefficient, such as lightly doped poly-Si and poly-SiGe. In this paper, the conceptual design is first analyzed and then verified with finite element modeling. The test structure is fabricated with poly-Si70% Ge30%. Its functionality is demonstrated from experimental results. The sources of the measurement error are discussed and the solutions to minimize the measurement error are proposed.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper reports the design, modeling, fabrication and measurement of a CMOS-compatible surface-micromachined test structure for the determination of the thermal conductivity of thin films based on the Seebeck effect. The Seebeck effect-based temperature sensing is more advantageous for thin film materials with a relatively large Seebeck coefficient, such as lightly doped poly-Si and poly-SiGe. In this paper, the conceptual design is first analyzed and then verified with finite element modeling. The test structure is fabricated with poly-Si70% Ge30%. Its functionality is demonstrated from experimental results. The sources of the measurement error are discussed and the solutions to minimize the measurement error are proposed.