{"title":"Development of an energy potential estimation model for concentrated solar plants penetration in the GCC region","authors":"Abdulrahman Joubi, K. Okajima","doi":"10.12720/SGCE.9.6.1000-1010","DOIUrl":null,"url":null,"abstract":"The rise of electricity demand and CO2 emissions in the Middle East and North Africa region has made it necessary to rely on new energy resources. As the region possesses an abundance of sunlight and vast empty areas, such as deserts, attention has shifted towards solar technologies. Although some renewable energy projects in the region are planned, the full potential of the solar and renewables has yet not been well explored. This may be due to a lack of conviction on the part of policy makers in a region where the Gulf Cooperation Countries are rich with fuel and natural gas and, over the years, have been relied upon as a source of cheap and readily available electricity. In this study a model for large-scale application of Concentrated Solar Plants is considered, to calculate maximum energy that Solar Tower CSP can provide in the GCC region. The outcome is to be used to reduce CO2 emissions and satisfy future demand and extra energy to be used for Hydrogen production and exportation, making the investment in such large scheme profitable.","PeriodicalId":247617,"journal":{"name":"International Journal of Smart Grid and Clean Energy","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart Grid and Clean Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/SGCE.9.6.1000-1010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The rise of electricity demand and CO2 emissions in the Middle East and North Africa region has made it necessary to rely on new energy resources. As the region possesses an abundance of sunlight and vast empty areas, such as deserts, attention has shifted towards solar technologies. Although some renewable energy projects in the region are planned, the full potential of the solar and renewables has yet not been well explored. This may be due to a lack of conviction on the part of policy makers in a region where the Gulf Cooperation Countries are rich with fuel and natural gas and, over the years, have been relied upon as a source of cheap and readily available electricity. In this study a model for large-scale application of Concentrated Solar Plants is considered, to calculate maximum energy that Solar Tower CSP can provide in the GCC region. The outcome is to be used to reduce CO2 emissions and satisfy future demand and extra energy to be used for Hydrogen production and exportation, making the investment in such large scheme profitable.