Integrated Feature Selection and Parameter Optimization for Evolving Spiking Neural Networks Using Quantum Inspired Particle Swarm Optimization

Haza Nuzly Abdul Hamed, N. Kasabov, S. Shamsuddin
{"title":"Integrated Feature Selection and Parameter Optimization for Evolving Spiking Neural Networks Using Quantum Inspired Particle Swarm Optimization","authors":"Haza Nuzly Abdul Hamed, N. Kasabov, S. Shamsuddin","doi":"10.1109/SOCPAR.2009.139","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method for optimizing features and parameters in the Evolving Spiking Neural Network (ESNN) using Quantum-inspired Particle Swarm Optimization (QiPSO). This study reveals the interesting concept of QiPSO in which information is represented as binary structures. The mechanism simultaneously optimizes the ESNN parameters and relevant features using wrapper approach. A synthetic dataset is used to evaluate the performance of the proposed method. The results show that QiPSO yields promising outcomes in obtaining the best combination of ESNN parameters as well as in identifying the most relevant features.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2009.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper proposes a novel method for optimizing features and parameters in the Evolving Spiking Neural Network (ESNN) using Quantum-inspired Particle Swarm Optimization (QiPSO). This study reveals the interesting concept of QiPSO in which information is represented as binary structures. The mechanism simultaneously optimizes the ESNN parameters and relevant features using wrapper approach. A synthetic dataset is used to evaluate the performance of the proposed method. The results show that QiPSO yields promising outcomes in obtaining the best combination of ESNN parameters as well as in identifying the most relevant features.
基于量子启发粒子群优化的进化脉冲神经网络特征选择与参数优化
提出了一种基于量子启发粒子群优化(QiPSO)的进化脉冲神经网络(ESNN)特征和参数优化方法。本研究揭示了QiPSO的有趣概念,其中信息被表示为二进制结构。该机制使用包装器方法同时优化ESNN参数和相关特征。使用一个合成数据集来评估所提出方法的性能。结果表明,QiPSO在获得ESNN参数的最佳组合以及识别最相关的特征方面取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信