{"title":"Post-layout leakage power minimization based on distributed sleep transistor insertion","authors":"P. Babighian, L. Benini, A. Macii, E. Macii","doi":"10.1145/1013235.1013275","DOIUrl":null,"url":null,"abstract":"This paper introduces a new approach to sub-threshold leakage power reduction in CMOS circuits. Our technique is based on automatic insertion of sleep transistors for cutting sub-threshold current when CMOS gates are in stand-by mode. Area and speed overhead caused by sleep transistor insertion are tightly controlled thanks to: (i) a post-layout incremental modification step that inserts sleep transistors in an existing row-based layout; (ii) an innovative algorithm that selects the subset of cells that can be gated for maximal leakage power reduction, while meeting user-provided constraints on area and delay increase. The presented technique is highly effective and fully compatible with industrial back-end flows, as demonstrated by post-layout analysts on several benchmarks placed and routed with state-of-the art commercial tools for physical design.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013235.1013275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
This paper introduces a new approach to sub-threshold leakage power reduction in CMOS circuits. Our technique is based on automatic insertion of sleep transistors for cutting sub-threshold current when CMOS gates are in stand-by mode. Area and speed overhead caused by sleep transistor insertion are tightly controlled thanks to: (i) a post-layout incremental modification step that inserts sleep transistors in an existing row-based layout; (ii) an innovative algorithm that selects the subset of cells that can be gated for maximal leakage power reduction, while meeting user-provided constraints on area and delay increase. The presented technique is highly effective and fully compatible with industrial back-end flows, as demonstrated by post-layout analysts on several benchmarks placed and routed with state-of-the art commercial tools for physical design.