Pattern-based grasping force estimation from surface electromyography

Bingke Zhang, Shiyou Zhang
{"title":"Pattern-based grasping force estimation from surface electromyography","authors":"Bingke Zhang, Shiyou Zhang","doi":"10.1109/ICAMMAET.2017.8186630","DOIUrl":null,"url":null,"abstract":"Aiming at maintaining the accuracy of grasping pattern recognition meanwhile evaluating the required force, this paper uses Linear discriminant analysis (LDA) to realize pattern recognition and artificial neural networks to establish the relationship between surface EMG signals and fingertip force in each grasping mode. Once the grasping pattern identified, the program calls the corresponding force model to estimate force value and achieve the combination force decoding and pattern recognition. The experiment shows that the force predicted with an average error of 10% meanwhile the average classification accuracy is about 83.21%.","PeriodicalId":425974,"journal":{"name":"2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAMMAET.2017.8186630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Aiming at maintaining the accuracy of grasping pattern recognition meanwhile evaluating the required force, this paper uses Linear discriminant analysis (LDA) to realize pattern recognition and artificial neural networks to establish the relationship between surface EMG signals and fingertip force in each grasping mode. Once the grasping pattern identified, the program calls the corresponding force model to estimate force value and achieve the combination force decoding and pattern recognition. The experiment shows that the force predicted with an average error of 10% meanwhile the average classification accuracy is about 83.21%.
基于模式的表面肌电图抓取力估计
为了保持抓取模式识别的准确性,同时评估所需的力,本文采用线性判别分析(Linear discriminant analysis, LDA)实现模式识别,并利用人工神经网络建立各种抓取模式下表面肌电信号与指尖力之间的关系。一旦确定抓取模式,程序调用相应的力模型来估计力值,实现组合力解码和模式识别。实验表明,预测力的平均误差为10%,平均分类精度约为83.21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信