UAV-UGV Teaming for Rapid Radiological Mapping

Samuel Kemp, J. Rogers
{"title":"UAV-UGV Teaming for Rapid Radiological Mapping","authors":"Samuel Kemp, J. Rogers","doi":"10.1109/SSRR53300.2021.9597870","DOIUrl":null,"url":null,"abstract":"This paper presents a novel configuration of UAV-UGV teams for rapid radiological mapping. The UGVs are equipped with low cost Geiger-Müller counters whose measurements are simulated using Poisson statistics. Gaussian Process Regression (GPR) is used to generate a model of the radiation field that includes uncertainty estimates. In the current work, the UAVs do not have sensors and only act as carrier drones for the UGVs equipped with sensors. The UAVs leverage information-driven path planning where the metric for information is the uncertainty in the GPR model. This information metric is used to determine regions to deploy the UGVs. The UGVs cover their given region using Boustrophedon cellular decomposition. Monte Carlo studies show that UAV-UGV teams using information theoretic path planning (ITPP) are able to lower the model error significantly faster relative to control experiments with UGV-only mapping or with UAV-UGV teams performing random sampling (RS). The model error decays exponentially for the UAV-UGV teams but only linearly for the UGV-only teams. These results illustrate a potential system concept for UAV-UGV teams performing radiation mapping and provide baseline results quantifying potential performance improvements over systems employing only mobile ground sensors.","PeriodicalId":423263,"journal":{"name":"2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR53300.2021.9597870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a novel configuration of UAV-UGV teams for rapid radiological mapping. The UGVs are equipped with low cost Geiger-Müller counters whose measurements are simulated using Poisson statistics. Gaussian Process Regression (GPR) is used to generate a model of the radiation field that includes uncertainty estimates. In the current work, the UAVs do not have sensors and only act as carrier drones for the UGVs equipped with sensors. The UAVs leverage information-driven path planning where the metric for information is the uncertainty in the GPR model. This information metric is used to determine regions to deploy the UGVs. The UGVs cover their given region using Boustrophedon cellular decomposition. Monte Carlo studies show that UAV-UGV teams using information theoretic path planning (ITPP) are able to lower the model error significantly faster relative to control experiments with UGV-only mapping or with UAV-UGV teams performing random sampling (RS). The model error decays exponentially for the UAV-UGV teams but only linearly for the UGV-only teams. These results illustrate a potential system concept for UAV-UGV teams performing radiation mapping and provide baseline results quantifying potential performance improvements over systems employing only mobile ground sensors.
用于快速放射测绘的无人机- ugv团队
本文提出了一种用于快速放射测绘的无人机- ugv小组的新配置。ugv配备了低成本的盖格-迈勒计数器,其测量使用泊松统计进行模拟。利用高斯过程回归(GPR)建立了包含不确定性估计的辐射场模型。在目前的工作中,无人机没有传感器,只是作为配备传感器的ugv的运载无人机。无人机利用信息驱动的路径规划,其中信息度量是GPR模型中的不确定性。此信息度量用于确定部署ugv的区域。ugv覆盖他们的给定区域使用的是单栉水母细胞分解。蒙特卡罗研究表明,相对于仅使用ugv映射的控制实验或使用随机抽样(RS)的控制实验,使用信息理论路径规划(ITPP)的无人机- ugv团队能够显著更快地降低模型误差。对于UAV-UGV团队,模型误差呈指数衰减,而对于仅ugv团队,模型误差仅呈线性衰减。这些结果说明了无人机- ugv团队进行辐射测绘的潜在系统概念,并提供了基线结果,量化了仅使用移动地面传感器的系统的潜在性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信