Optimization of Resource Allocation in Mobile Edge Computing using Bio-Inspired Algorithm

C. Anuradha, M. Ponnavaikko
{"title":"Optimization of Resource Allocation in Mobile Edge Computing using Bio-Inspired Algorithm","authors":"C. Anuradha, M. Ponnavaikko","doi":"10.1109/ICSCAN53069.2021.9526479","DOIUrl":null,"url":null,"abstract":"Cloud computing provides consumers with a forum for accessing services and data over the Internet. With an increasing number of machine-type networking systems, machine-to-machine (M2M) networking has piqued the attention of both academia and industry (MTCDs). Unlike traditional networking networks, M2M communications data links are typically narrow yet high bandwidth, necessitating capacity control of both energy usage and computation. Task offloading, congestion management, resource sharing, protection and privacy issues, mobility, and standardization are the key problems in mobile edge computing. Our research focuses on offloading-based resource utilization and security problems in cloud environments by analyzing network parameters such as latency reduction and bandwidth optimization. We present an Ant bee colony algorithm, which have been modified with tracking and trace back procedures, to reduce execution time and maximize computational resource distribution while also improving computing capabilities.","PeriodicalId":393569,"journal":{"name":"2021 International Conference on System, Computation, Automation and Networking (ICSCAN)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on System, Computation, Automation and Networking (ICSCAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCAN53069.2021.9526479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cloud computing provides consumers with a forum for accessing services and data over the Internet. With an increasing number of machine-type networking systems, machine-to-machine (M2M) networking has piqued the attention of both academia and industry (MTCDs). Unlike traditional networking networks, M2M communications data links are typically narrow yet high bandwidth, necessitating capacity control of both energy usage and computation. Task offloading, congestion management, resource sharing, protection and privacy issues, mobility, and standardization are the key problems in mobile edge computing. Our research focuses on offloading-based resource utilization and security problems in cloud environments by analyzing network parameters such as latency reduction and bandwidth optimization. We present an Ant bee colony algorithm, which have been modified with tracking and trace back procedures, to reduce execution time and maximize computational resource distribution while also improving computing capabilities.
基于仿生算法的移动边缘计算资源分配优化
云计算为消费者提供了一个通过互联网访问服务和数据的平台。随着机器型网络系统数量的增加,机器对机器(M2M)网络引起了学术界和工业界(mtcd)的关注。与传统的网络网络不同,M2M通信数据链路通常很窄,但带宽很高,因此需要对能源使用和计算进行容量控制。任务卸载、拥塞管理、资源共享、保护和隐私问题、移动性和标准化是移动边缘计算的关键问题。我们的研究重点是在云环境中基于卸载的资源利用和安全问题,通过分析网络参数,如延迟减少和带宽优化。我们提出了一种蚁群算法,该算法经过跟踪和回溯过程的修改,以减少执行时间和最大化计算资源分配,同时也提高了计算能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信