Using Moving Averages To Pave The Neutrosophic Time Series

Rafif Alhabib, A. A. Salama
{"title":"Using Moving Averages To Pave The Neutrosophic Time Series","authors":"Rafif Alhabib, A. A. Salama","doi":"10.5281/ZENODO.3732611","DOIUrl":null,"url":null,"abstract":"In this paper, were using moving averages to pave the Neutrosophic time series. similar to use moving averages to pave the classical time series. the difference, here were dealing with inaccurate data and values of the time series.in the Neutrosophic time series, each unit of time(t) corresponds to a range of values instead of a single value. Finally, we find that the Neutrosophic time series provide an accurate description of the behavior of the series better than in the classic. Therefore, can predict the future of the series as accurately as possible.","PeriodicalId":192295,"journal":{"name":"International Journal of Neutrosophic Science","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neutrosophic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.3732611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

In this paper, were using moving averages to pave the Neutrosophic time series. similar to use moving averages to pave the classical time series. the difference, here were dealing with inaccurate data and values of the time series.in the Neutrosophic time series, each unit of time(t) corresponds to a range of values instead of a single value. Finally, we find that the Neutrosophic time series provide an accurate description of the behavior of the series better than in the classic. Therefore, can predict the future of the series as accurately as possible.
使用移动平均线铺就中性时间序列
在本文中,我们使用移动平均线来铺设中性时间序列。类似于使用移动平均线来铺设经典时间序列。不同的是,这里处理的是不准确的数据和时间序列的值。在嗜中性时间序列中,每个时间单位(t)对应一个范围的值,而不是一个单一的值。最后,我们发现中性粒细胞时间序列比经典时间序列更能准确地描述序列的行为。因此,可以尽可能准确地预测未来的系列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信