A new method for short term electric load forecasting

Gwo-Ching Liao
{"title":"A new method for short term electric load forecasting","authors":"Gwo-Ching Liao","doi":"10.1109/APCCAS.2004.1413092","DOIUrl":null,"url":null,"abstract":"An integrated genetic algorithm (GA)/tabu search (TS) and neural fuzzy network (NFN) method for load forecasting is presented In this work. A neural fuzzy network (NFN) was used for the initial load forecasting. Then we used CGA and TS to find the optimal solution of the parameters of the NFN, instead of back-propagation (BP). First the GA generates a set of feasible solution parameters and then puts the solution into the TS. We combined both methods to try and obtain both advantages, and in doing so eliminate the drawback of the traditional ANN training by BP.","PeriodicalId":426683,"journal":{"name":"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2004.1413092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An integrated genetic algorithm (GA)/tabu search (TS) and neural fuzzy network (NFN) method for load forecasting is presented In this work. A neural fuzzy network (NFN) was used for the initial load forecasting. Then we used CGA and TS to find the optimal solution of the parameters of the NFN, instead of back-propagation (BP). First the GA generates a set of feasible solution parameters and then puts the solution into the TS. We combined both methods to try and obtain both advantages, and in doing so eliminate the drawback of the traditional ANN training by BP.
电力负荷短期预测的一种新方法
本文提出了一种综合遗传算法(GA)/禁忌搜索(TS)和神经模糊网络(NFN)的负荷预测方法。采用神经模糊网络(NFN)进行初始负荷预测。然后,我们使用CGA和TS来寻找NFN参数的最优解,而不是反向传播(BP)。首先,遗传算法生成一组可行的解参数,然后将解放入TS中。我们将两种方法结合起来,试图获得两者的优点,从而消除了传统的BP神经网络训练的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信