Two dimensional direction of arrival estimation for co-prime L-shaped array using sparse reconstruction

Qinghua Liu, Xiaodong Yi, Liangnian Jin, Wei Chen
{"title":"Two dimensional direction of arrival estimation for co-prime L-shaped array using sparse reconstruction","authors":"Qinghua Liu, Xiaodong Yi, Liangnian Jin, Wei Chen","doi":"10.1109/CISP.2015.7408121","DOIUrl":null,"url":null,"abstract":"The maximum estimable number of sources of the traditional algorithms of Two Dimensional Direction-of-Arrival (2D-DOA) estimation have large amount of calculations, and the maximum estimable number of sources is strictly limited by the number of array elements. In this paper, with the co-prime L-shaped array, a sparse reconstruction method using the Khatri-Rao (KR) product is proposed. The 2D-DOA estimation is transformed into two 1D-DOA processes, and the parameters are automatically paired. The simulation results show that the proposed method can accurately handle more sources than physical sensors to improve the spatial resolution under small number of snapshots.","PeriodicalId":167631,"journal":{"name":"2015 8th International Congress on Image and Signal Processing (CISP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2015.7408121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The maximum estimable number of sources of the traditional algorithms of Two Dimensional Direction-of-Arrival (2D-DOA) estimation have large amount of calculations, and the maximum estimable number of sources is strictly limited by the number of array elements. In this paper, with the co-prime L-shaped array, a sparse reconstruction method using the Khatri-Rao (KR) product is proposed. The 2D-DOA estimation is transformed into two 1D-DOA processes, and the parameters are automatically paired. The simulation results show that the proposed method can accurately handle more sources than physical sensors to improve the spatial resolution under small number of snapshots.
基于稀疏重建的共素数l形阵列二维到达方向估计
传统二维到达方向(2D-DOA)估计算法的最大估计源数计算量大,且最大估计源数受到阵列元素数的严格限制。本文以协素数l形阵列为例,提出了一种利用Khatri-Rao (KR)积的稀疏重构方法。将二维doa估计转化为两个一维doa过程,并自动对参数进行配对。仿真结果表明,与物理传感器相比,该方法能够准确地处理更多的源,提高了少量快照下的空间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信