POSTER: Wi-Fi Indoor Positioning Based on Sparse Autoencoder and Deep Belief Network

Xuerong Cui, Jinyang Lou, Juan Li, Binbin Jiang, Shibao Li, Jianhang Liu
{"title":"POSTER: Wi-Fi Indoor Positioning Based on Sparse Autoencoder and Deep Belief Network","authors":"Xuerong Cui, Jinyang Lou, Juan Li, Binbin Jiang, Shibao Li, Jianhang Liu","doi":"10.1109/WoWMoM57956.2023.00051","DOIUrl":null,"url":null,"abstract":"In order to reduce the influence of the complexity and diversity of indoor environment on traditional localization methods and to more effectively use Wi-Fi fingerprint data to position an object, an indoor localization algorithm based on Sparse autoencoder(SAE) and Deep Belief Network(DBN) was proposed, the SAE-DBN model, was proposed. In this method, the SAE first extracts the depth features of the training data, and identifies the objects from different experimental areas. Then, the DBN model of the corresponding area is used to accurately position the objects. The simulation results show that compared with the traditional Wi-Fi positioning method and some existing improved algorithms, the proposed Wi-Fi positioning method has higher accuracy and stability, and the average positioning accuracy is 1.13 m.","PeriodicalId":132845,"journal":{"name":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM57956.2023.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to reduce the influence of the complexity and diversity of indoor environment on traditional localization methods and to more effectively use Wi-Fi fingerprint data to position an object, an indoor localization algorithm based on Sparse autoencoder(SAE) and Deep Belief Network(DBN) was proposed, the SAE-DBN model, was proposed. In this method, the SAE first extracts the depth features of the training data, and identifies the objects from different experimental areas. Then, the DBN model of the corresponding area is used to accurately position the objects. The simulation results show that compared with the traditional Wi-Fi positioning method and some existing improved algorithms, the proposed Wi-Fi positioning method has higher accuracy and stability, and the average positioning accuracy is 1.13 m.
海报:基于稀疏自编码器和深度信念网络的Wi-Fi室内定位
为了降低室内环境的复杂性和多样性对传统定位方法的影响,更有效地利用Wi-Fi指纹数据对目标进行定位,提出了一种基于稀疏自编码器(SAE)和深度信念网络(DBN)的室内定位算法,即SAE-DBN模型。在该方法中,SAE首先提取训练数据的深度特征,并从不同的实验区域中识别目标。然后,利用相应区域的DBN模型对目标进行精确定位。仿真结果表明,与传统的Wi-Fi定位方法和现有的一些改进算法相比,本文提出的Wi-Fi定位方法具有更高的精度和稳定性,平均定位精度为1.13 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信