Centralized multi-sensor multi-target tracking with labeled random finite sets

B. Wei, B. Nener, Weifeng Liu, Liang Ma
{"title":"Centralized multi-sensor multi-target tracking with labeled random finite sets","authors":"B. Wei, B. Nener, Weifeng Liu, Liang Ma","doi":"10.1109/ICCAIS.2016.7822440","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of multi-sensor multi-target tracking. The main contribution is an efficient implementation of the multi-sensor δ-Generalized labeled Multi-Bernoulli (δ-GLMB) update. To truncate the weighted sums of the multi-target exponentials, the ranked assignment algorithm is used in the update to determine the most important terms without computing all the terms. Simulation experiments via linear Gaussian mixture models confirm the effectiveness of the proposed algorithm.","PeriodicalId":407031,"journal":{"name":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2016.7822440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper addresses the problem of multi-sensor multi-target tracking. The main contribution is an efficient implementation of the multi-sensor δ-Generalized labeled Multi-Bernoulli (δ-GLMB) update. To truncate the weighted sums of the multi-target exponentials, the ranked assignment algorithm is used in the update to determine the most important terms without computing all the terms. Simulation experiments via linear Gaussian mixture models confirm the effectiveness of the proposed algorithm.
带标记随机有限集的多传感器多目标集中跟踪
本文研究了多传感器多目标跟踪问题。主要贡献是有效地实现了多传感器δ-广义标记多伯努利(δ-GLMB)更新。为了截断多目标指数的加权和,在更新中使用排序分配算法来确定最重要的项,而不计算所有项。通过线性高斯混合模型的仿真实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信