Global localization of Monte Carlo localization based on multi-objective particle swarm optimization

Chiang-Heng Chien, C. Hsu, Wei-Yen Wang, W. Kao, Chiang-Ju Chien
{"title":"Global localization of Monte Carlo localization based on multi-objective particle swarm optimization","authors":"Chiang-Heng Chien, C. Hsu, Wei-Yen Wang, W. Kao, Chiang-Ju Chien","doi":"10.1109/ICCE-Berlin.2016.7684728","DOIUrl":null,"url":null,"abstract":"Premature convergence often happens when a Monte Carlo localization (MCL) algorithm tries to localize a robot under highly symmetrical environments. In this paper, we propose a novel method of solving such problem for global localization by incorporating a multi-objective evolutionary approach to resample particles with two objectives, including particle weights and population distribution. By employing a multi-objective particle swarm optimization (MOPSO), our approach is capable of enhancing the exploration ability to improve population diversity while maintaining convergence quality to successfully localize the global optima. Simulation results have confirmed that localization performance using the proposed approach is significantly improved.","PeriodicalId":408379,"journal":{"name":"2016 IEEE 6th International Conference on Consumer Electronics - Berlin (ICCE-Berlin)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 6th International Conference on Consumer Electronics - Berlin (ICCE-Berlin)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Berlin.2016.7684728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Premature convergence often happens when a Monte Carlo localization (MCL) algorithm tries to localize a robot under highly symmetrical environments. In this paper, we propose a novel method of solving such problem for global localization by incorporating a multi-objective evolutionary approach to resample particles with two objectives, including particle weights and population distribution. By employing a multi-objective particle swarm optimization (MOPSO), our approach is capable of enhancing the exploration ability to improve population diversity while maintaining convergence quality to successfully localize the global optima. Simulation results have confirmed that localization performance using the proposed approach is significantly improved.
基于多目标粒子群优化的蒙特卡罗全局定位
蒙特卡罗定位算法在高度对称环境下对机器人进行定位时,往往会出现过早收敛的现象。在本文中,我们提出了一种解决全局定位问题的新方法,该方法将多目标进化方法结合两个目标(包括粒子质量和种群分布)来重新采样粒子。该方法采用多目标粒子群优化(MOPSO)方法,在保持收敛质量的同时,提高了种群多样性的探索能力,成功地定位了全局最优解。仿真结果表明,采用该方法可以显著提高定位性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信