LORE: a model for the detection of fine-grained locative references in tweets

N. Fernández-Martínez, Carlos Periñán-Pascual
{"title":"LORE: a model for the detection of fine-grained locative references in tweets","authors":"N. Fernández-Martínez, Carlos Periñán-Pascual","doi":"10.7764/onomazein.52.11","DOIUrl":null,"url":null,"abstract":"Extracting geospatially rich knowledge from tweets is of utmost importance for location-based systems in emergency services to raise situational awareness about a given crisis-related incident, such as earthquakes, floods, car accidents, terrorist attacks, shooting attacks, etc. The problem is that the majority of tweets are not geotagged, so we need to resort to the messages in the search of geospatial evidence. In this context, we present LORE, a location-detection system for tweets that leverages the geographic database GeoNames together with linguistic knowledge through NLP techniques. One of the main contributions of this model is to capture fine-grained complex locative references, ranging from geopolitical entities and natural geographic references to points of interest and traffic ways. LORE outperforms state-of-the-art open-source location-extraction systems (i.e. Stanford NER, spaCy, NLTK and OpenNLP), achieving an unprecedented trade-off between precision and recall. Therefore, our model provides not only a quantitative advantage over other well-known systems in terms of performance but also a qualitative advantage in terms of the diversity and semantic granularity of the locative references extracted from the tweets.","PeriodicalId":387207,"journal":{"name":"Onomázein Revista de lingüística filología y traducción","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Onomázein Revista de lingüística filología y traducción","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7764/onomazein.52.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Extracting geospatially rich knowledge from tweets is of utmost importance for location-based systems in emergency services to raise situational awareness about a given crisis-related incident, such as earthquakes, floods, car accidents, terrorist attacks, shooting attacks, etc. The problem is that the majority of tweets are not geotagged, so we need to resort to the messages in the search of geospatial evidence. In this context, we present LORE, a location-detection system for tweets that leverages the geographic database GeoNames together with linguistic knowledge through NLP techniques. One of the main contributions of this model is to capture fine-grained complex locative references, ranging from geopolitical entities and natural geographic references to points of interest and traffic ways. LORE outperforms state-of-the-art open-source location-extraction systems (i.e. Stanford NER, spaCy, NLTK and OpenNLP), achieving an unprecedented trade-off between precision and recall. Therefore, our model provides not only a quantitative advantage over other well-known systems in terms of performance but also a qualitative advantage in terms of the diversity and semantic granularity of the locative references extracted from the tweets.
LORE:用于检测tweet中细粒度位置引用的模型
从tweet中提取地理空间丰富的知识对于基于位置的系统在紧急服务中提高对特定危机相关事件(如地震、洪水、车祸、恐怖袭击、枪击等)的态势感知至关重要。问题是,大多数推文都没有地理标记,所以我们需要在搜索地理空间证据时求助于这些消息。在这种情况下,我们提出了LORE,这是一种推文位置检测系统,它利用地理数据库GeoNames和通过NLP技术获得的语言知识。该模型的主要贡献之一是捕获细粒度的复杂位置参考,范围从地缘政治实体和自然地理参考到兴趣点和交通方式。LORE优于最先进的开源位置提取系统(即斯坦福NER, space, NLTK和OpenNLP),在精度和召回率之间实现了前所未有的权衡。因此,我们的模型不仅在性能方面比其他知名系统具有定量优势,而且在从tweet中提取的位置引用的多样性和语义粒度方面也具有定性优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信