Skye Thompson, Pragna Mannam, Zeynep Temel, Oliver Kroemer
{"title":"Towards Robust Planar Translations using Delta-manipulator Arrays","authors":"Skye Thompson, Pragna Mannam, Zeynep Temel, Oliver Kroemer","doi":"10.1109/ICRA48506.2021.9561003","DOIUrl":null,"url":null,"abstract":"Distributed manipulators - consisting of a set of actuators or robots working cooperatively to achieve a manipulation task - are robust and flexible tools for performing a range of planar manipulation skills. One novel example is the delta array, a distributed manipulator composed of a grid of delta robots, capable of performing dexterous manipulation tasks using strategies incorporating both dynamic and static contact. Hand-designing effective distributed control policies for such a manipulator can be complex and time consuming, given the high-dimensional action space and unfamiliar system dynamics. In this paper, we examine the principles guiding development and control of such a delta array for a planar translation task. We explore policy learning as a robust cooperative control approach, allowing for smooth manipulation of a range of objects, showing improved accuracy and efficiency over baseline human-designed policies.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Distributed manipulators - consisting of a set of actuators or robots working cooperatively to achieve a manipulation task - are robust and flexible tools for performing a range of planar manipulation skills. One novel example is the delta array, a distributed manipulator composed of a grid of delta robots, capable of performing dexterous manipulation tasks using strategies incorporating both dynamic and static contact. Hand-designing effective distributed control policies for such a manipulator can be complex and time consuming, given the high-dimensional action space and unfamiliar system dynamics. In this paper, we examine the principles guiding development and control of such a delta array for a planar translation task. We explore policy learning as a robust cooperative control approach, allowing for smooth manipulation of a range of objects, showing improved accuracy and efficiency over baseline human-designed policies.