Logistic Fractional Variable-Order Equation - Numerical Simulations for Fitting Parameters

D. Mozyrska, Piotr Oziablo
{"title":"Logistic Fractional Variable-Order Equation - Numerical Simulations for Fitting Parameters","authors":"D. Mozyrska, Piotr Oziablo","doi":"10.1109/MMAR.2018.8486141","DOIUrl":null,"url":null,"abstract":"The work presents variable-, fractional-order backward difference of the Grünwald-Letnikov type. Variable and fractional-order in the name of the operator means that instead of constant, integer order backward difference, the order of the tested operator is a real value function. The focus is put on presenting the method of finding the parameter of the order function (assuming that the general family of the function is known) and constant $\\lambda$ coefficient in a way that values returned by the operator fit some particular simulated data. Mentioned $\\lambda$ coefficient is the scaling factor of eigenfunction of the tested backward difference operator.","PeriodicalId":201658,"journal":{"name":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2018.8486141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The work presents variable-, fractional-order backward difference of the Grünwald-Letnikov type. Variable and fractional-order in the name of the operator means that instead of constant, integer order backward difference, the order of the tested operator is a real value function. The focus is put on presenting the method of finding the parameter of the order function (assuming that the general family of the function is known) and constant $\lambda$ coefficient in a way that values returned by the operator fit some particular simulated data. Mentioned $\lambda$ coefficient is the scaling factor of eigenfunction of the tested backward difference operator.
Logistic分数阶变阶方程-参数拟合的数值模拟
本文提出了格恩瓦尔德-列特尼科夫型的可变、分数阶后向差分。变量和分数阶在运算符的名称中意味着被测运算符的阶数是实值函数,而不是常数、整数阶的后向差分。重点是给出查找阶函数参数(假设函数的一般族已知)和常数$\ λ $系数的方法,使运算符返回的值适合某些特定的模拟数据。所提到的$\ λ $系数是被测后向差分算子的特征函数的比例因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信