Physical-aware Interconnect Testing and Repairing of Chiplets

C. Cui, Tuanhui Xu, Haitao Fu, Junlin Huang
{"title":"Physical-aware Interconnect Testing and Repairing of Chiplets","authors":"C. Cui, Tuanhui Xu, Haitao Fu, Junlin Huang","doi":"10.1109/ETS56758.2023.10174179","DOIUrl":null,"url":null,"abstract":"As the interconnect density of chiplets increases rapidly, some physics related defects appeared, such as coupling defects, etc. These defects are hard to detect with ordinary pseudo-random sequence patterns, some special test patterns are needed. Besides, the chip warpage caused by the thinning of 3D chips manufacturing and the uneven stress around TSVs or micro bumps will bring clustered faults of interconnections. For these defects, the repair rate of conventional interconnect redundancy method will be decreased. This paper proposes a physical-aware interconnect testing and repairing method of chiplets, using specific test patterns and clustered faults redundancy circuits to improve the interconnect test coverage and repair rate of chiplets. We also propose automatic repair circuits and the repair data synchronization scheme between multiple dies, so that the calculating and programming of repair data do not need to rely on the ATE programming, and the synchronization of the repair data between multiple dies can be done by hardware circuits automatically, which ensure the interconnection correctly after repairing.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the interconnect density of chiplets increases rapidly, some physics related defects appeared, such as coupling defects, etc. These defects are hard to detect with ordinary pseudo-random sequence patterns, some special test patterns are needed. Besides, the chip warpage caused by the thinning of 3D chips manufacturing and the uneven stress around TSVs or micro bumps will bring clustered faults of interconnections. For these defects, the repair rate of conventional interconnect redundancy method will be decreased. This paper proposes a physical-aware interconnect testing and repairing method of chiplets, using specific test patterns and clustered faults redundancy circuits to improve the interconnect test coverage and repair rate of chiplets. We also propose automatic repair circuits and the repair data synchronization scheme between multiple dies, so that the calculating and programming of repair data do not need to rely on the ATE programming, and the synchronization of the repair data between multiple dies can be done by hardware circuits automatically, which ensure the interconnection correctly after repairing.
小芯片的物理感知互连测试与修复
随着晶片互连密度的快速增加,出现了一些物理缺陷,如耦合缺陷等。这些缺陷很难用普通的伪随机序列模式检测出来,需要一些特殊的测试模式。此外,由于三维芯片制造变薄导致的芯片翘曲以及tsv周围应力不均或微凸起会导致互连的聚集性故障。对于这些缺陷,传统互连冗余方法的修复率会降低。本文提出了一种基于物理感知的小芯片互连测试与修复方法,采用特定的测试模式和聚类故障冗余电路,提高了小芯片互连测试覆盖率和修复率。提出了自动修模电路和多模间修模数据同步方案,使修模数据的计算和编程不需要依赖于ATE编程,多模间修模数据的同步可以由硬件电路自动完成,保证修模后的正确互连。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信