Aggregate-based query processing in a parallel data warehouse server

J. Albrecht, Wolfgang Sporer
{"title":"Aggregate-based query processing in a parallel data warehouse server","authors":"J. Albrecht, Wolfgang Sporer","doi":"10.1109/DEXA.1999.795142","DOIUrl":null,"url":null,"abstract":"In the last years data warehousing has emerged as a fundamental database technology providing the basis for online analytical processing (OLAP). In general, analytical queries involve aggregations of large data sets. This results in serious performance problems if ad-hoc queries are to be answered online. One method to avoid performance bottlenecks is to use parallel hardware, i.e. SMP or MPP machines which are able to cope with the data volume. Another optimization approach specific to data warehousing is to preaggregate some of the results in order to avoid scanning the base relations. The prototypical OLAP system CUBESTAR PARALLEL SERVER combines both approaches. In order to achieve high query performance with low hardware costs, we present a technique for the dynamic, i.e. query-behavior and load-dependent, use and management of multidimensional aggregates in a shared-nothing workstation cluster.","PeriodicalId":276867,"journal":{"name":"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.1999.795142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the last years data warehousing has emerged as a fundamental database technology providing the basis for online analytical processing (OLAP). In general, analytical queries involve aggregations of large data sets. This results in serious performance problems if ad-hoc queries are to be answered online. One method to avoid performance bottlenecks is to use parallel hardware, i.e. SMP or MPP machines which are able to cope with the data volume. Another optimization approach specific to data warehousing is to preaggregate some of the results in order to avoid scanning the base relations. The prototypical OLAP system CUBESTAR PARALLEL SERVER combines both approaches. In order to achieve high query performance with low hardware costs, we present a technique for the dynamic, i.e. query-behavior and load-dependent, use and management of multidimensional aggregates in a shared-nothing workstation cluster.
并行数据仓库服务器中基于聚合的查询处理
在过去的几年中,数据仓库已经成为一种基础数据库技术,为在线分析处理(OLAP)提供了基础。通常,分析查询涉及大型数据集的聚合。如果要在线回答特别的查询,这将导致严重的性能问题。避免性能瓶颈的一种方法是使用并行硬件,即能够处理数据量的SMP或MPP机器。另一种特定于数据仓库的优化方法是预聚合一些结果,以避免扫描基本关系。典型的OLAP系统CUBESTAR PARALLEL SERVER结合了这两种方法。为了以较低的硬件成本获得较高的查询性能,我们提出了一种在无共享工作站集群中动态使用和管理多维聚合的技术,即查询行为和负载依赖技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信