Automatic detection of atrial fibrillation using MEMS accelerometer

T. Koivisto, Mikko Pänkäälä, Tero Hurnanen, T. Vasankari, T. Kiviniemi, A. Saraste, J. Airaksinen
{"title":"Automatic detection of atrial fibrillation using MEMS accelerometer","authors":"T. Koivisto, Mikko Pänkäälä, Tero Hurnanen, T. Vasankari, T. Kiviniemi, A. Saraste, J. Airaksinen","doi":"10.1109/CIC.2015.7411039","DOIUrl":null,"url":null,"abstract":"The aim of the study was to assess the applicability of seismocardiogram (SCG) for the detection of atrial fibrillation (AF) in telemonitoring applications. SCG data used in this study consists of simultaneous SCG and ECG recordings of 12 patients during both AF and sinus rhythm (after cardioversion). An SCG-based AF-detection algorithm was developed and its performance tested with the acquired clinical data. The algorithm is able to distinguish AF positive samples from samples with sinus rhythm with high accuracy.","PeriodicalId":414802,"journal":{"name":"2015 Computing in Cardiology Conference (CinC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2015.7411039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The aim of the study was to assess the applicability of seismocardiogram (SCG) for the detection of atrial fibrillation (AF) in telemonitoring applications. SCG data used in this study consists of simultaneous SCG and ECG recordings of 12 patients during both AF and sinus rhythm (after cardioversion). An SCG-based AF-detection algorithm was developed and its performance tested with the acquired clinical data. The algorithm is able to distinguish AF positive samples from samples with sinus rhythm with high accuracy.
基于MEMS加速度计的房颤自动检测
该研究的目的是评估地震心动图(SCG)在远程监测应用中检测心房颤动(AF)的适用性。本研究中使用的SCG数据包括12例患者在房颤和窦性心律(心律转复后)期间的SCG和ECG同时记录。开发了一种基于scg的af检测算法,并利用获得的临床数据对其性能进行了测试。该算法能够将心房颤动阳性样本与窦性心律样本区分开来,准确率较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信