Position and force control of robot manipulators using neural networks

Yu Zhao, C. Cheah
{"title":"Position and force control of robot manipulators using neural networks","authors":"Yu Zhao, C. Cheah","doi":"10.1109/RAMECH.2004.1438935","DOIUrl":null,"url":null,"abstract":"Most research on force control of robot manipulators has assumed that the kinematics and constraint surface are known exactly. In this paper, the position and force control problem of robots with uncertain kinematics, dynamics and constraint is addressed. An adaptive set point control law based on neural networks is proposed. Sufficient conditions for choosing the feedback gains are presented to guarantee the stability. Simulation results are presented to demonstrate the effectiveness of the proposed controller.","PeriodicalId":252964,"journal":{"name":"IEEE Conference on Robotics, Automation and Mechatronics, 2004.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Robotics, Automation and Mechatronics, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMECH.2004.1438935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Most research on force control of robot manipulators has assumed that the kinematics and constraint surface are known exactly. In this paper, the position and force control problem of robots with uncertain kinematics, dynamics and constraint is addressed. An adaptive set point control law based on neural networks is proposed. Sufficient conditions for choosing the feedback gains are presented to guarantee the stability. Simulation results are presented to demonstrate the effectiveness of the proposed controller.
基于神经网络的机器人机械手位置与力控制
大多数关于机器人机械臂力控制的研究都是在运动学和约束曲面已知的前提下进行的。研究了具有不确定运动学、动力学和约束的机器人的位置和力控制问题。提出了一种基于神经网络的自适应设定点控制律。为了保证系统的稳定性,给出了选择反馈增益的充分条件。仿真结果验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信