Melissa C. Rodriguez, J. Tarazi, A. Dadello, E. Convert, M. G. McCulloch, S. Mahon, S. Hwang, Rodney G. Mould, A. Fattorini, A. C. Young, J. Harvey, A. Parker, M. Heimlich, Wen-Kai Wang
{"title":"Full ETSI E-Band Doubler, Quadrupler and 24 dBm Power Amplifier","authors":"Melissa C. Rodriguez, J. Tarazi, A. Dadello, E. Convert, M. G. McCulloch, S. Mahon, S. Hwang, Rodney G. Mould, A. Fattorini, A. C. Young, J. Harvey, A. Parker, M. Heimlich, Wen-Kai Wang","doi":"10.1109/CSICS.2012.6340084","DOIUrl":null,"url":null,"abstract":"A GaAs pHEMT frequency doubler, a quadrupler and a power amplifier for E-band applications have been demonstrated to achieve useful output power and power added efficiency (PAE) over a wide bandwidth. The doubler and quadrupler circuits include medium power amplifiers to increase their gain and output power. The doubler has a measured output power greater than 15 dBm over the entire 15 GHz bandwidth of the European Telecommunications Standards Institute (ETSI) E-band specification. The quadrupler has similar output power over the ETSI E bands with a maximum output power of 19.2 dBm. The power amplifier has a maximum measured output power of 24.2 dBm (265 mW) and exceeds 23 dBm (200 mW) over the ETSI E bands. This amplifier has a measured small signal gain of 15 dB and the input and output return losses exceed 15 dB. Its measured PAE is above 8% across the ETSI E bands. This is the highest saturated output power (Psat) and PAE for a power amplifier spanning the full 71 to 86 GHz span of the ETSI E bands for any semiconductor system. Good agreement is demonstrated between measurement and simulation.","PeriodicalId":290079,"journal":{"name":"2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2012.6340084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A GaAs pHEMT frequency doubler, a quadrupler and a power amplifier for E-band applications have been demonstrated to achieve useful output power and power added efficiency (PAE) over a wide bandwidth. The doubler and quadrupler circuits include medium power amplifiers to increase their gain and output power. The doubler has a measured output power greater than 15 dBm over the entire 15 GHz bandwidth of the European Telecommunications Standards Institute (ETSI) E-band specification. The quadrupler has similar output power over the ETSI E bands with a maximum output power of 19.2 dBm. The power amplifier has a maximum measured output power of 24.2 dBm (265 mW) and exceeds 23 dBm (200 mW) over the ETSI E bands. This amplifier has a measured small signal gain of 15 dB and the input and output return losses exceed 15 dB. Its measured PAE is above 8% across the ETSI E bands. This is the highest saturated output power (Psat) and PAE for a power amplifier spanning the full 71 to 86 GHz span of the ETSI E bands for any semiconductor system. Good agreement is demonstrated between measurement and simulation.