Machine Learning for Estimation of State-of-Charge of Energy Storage System

D. H. C. Lam, Y. Lim, J. Wong, L. Hau
{"title":"Machine Learning for Estimation of State-of-Charge of Energy Storage System","authors":"D. H. C. Lam, Y. Lim, J. Wong, L. Hau","doi":"10.1109/ICSCGE53744.2021.9654400","DOIUrl":null,"url":null,"abstract":"This paper presents a long short-term memory (LSTM) network for battery state-of-charge (SoC) estimation. At present, there is limited research on machine learning techniques for the SoC estimation of batteries in grid applications. Therefore, this paper studies the use of the LSTM network for battery SoC estimation during peak demand reduction. The LSTM network is compared with other existing SoC estimation methods such as empirical method, coulomb counting, extended Kalman filter, and unscented Kalman filter, along with another machine learning algorithm, namely the feedforward neural network. The LSTM network achieves an average mean absolute error of 0.10 and a root mean square error of 0.12.","PeriodicalId":329321,"journal":{"name":"2021 International Conference on Smart City and Green Energy (ICSCGE)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Smart City and Green Energy (ICSCGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCGE53744.2021.9654400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a long short-term memory (LSTM) network for battery state-of-charge (SoC) estimation. At present, there is limited research on machine learning techniques for the SoC estimation of batteries in grid applications. Therefore, this paper studies the use of the LSTM network for battery SoC estimation during peak demand reduction. The LSTM network is compared with other existing SoC estimation methods such as empirical method, coulomb counting, extended Kalman filter, and unscented Kalman filter, along with another machine learning algorithm, namely the feedforward neural network. The LSTM network achieves an average mean absolute error of 0.10 and a root mean square error of 0.12.
基于机器学习的储能系统充电状态估计
提出了一种用于电池荷电状态估计的LSTM网络。目前,针对电网应用中电池荷电状态估计的机器学习技术研究有限。因此,本文研究了LSTM网络在降峰过程中对电池荷电状态的估计。将LSTM网络与其他现有的SoC估计方法(如经验方法、库伦计数、扩展卡尔曼滤波和无气味卡尔曼滤波)以及另一种机器学习算法(即前馈神经网络)进行了比较。LSTM网络的平均绝对误差为0.10,均方根误差为0.12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信