{"title":"A Highly Efficient Broadband mm-Wave 24-32.5 GHz SiGe PA for Potential 5G Applications","authors":"J. Tsay, J. Mayeda, Jerry Lopez, D. Lie","doi":"10.1109/MWSCAS.2019.8885209","DOIUrl":null,"url":null,"abstract":"We present in this work a highly efficient broadband millimeter-wave power amplifier (mm-wave PA) design in a 90nm SiGe technology for potential 5G applications. The post-layout extraction simulations suggest that the PA achieves broadband power-added efficiency (PAE) >31.4%, gain >8.5 dB, and POUT,sat >13.3 dBm across 24-32.5 GHz, with peak PAE of 40.2% at 26 GHz. The PA shows good linearity with 16-QAM LTE 250 MHz modulated signal input, obtaining ACLR1 of -38.6/-37.3 dBc at 26 GHz with POUT,avg of 6.4 dBm. The PA is also robust against variation in bias VB = 0.83-0.85 V and supply VCC = 1.0-1.4 V and can be applicable toward multi-band 5G applications.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present in this work a highly efficient broadband millimeter-wave power amplifier (mm-wave PA) design in a 90nm SiGe technology for potential 5G applications. The post-layout extraction simulations suggest that the PA achieves broadband power-added efficiency (PAE) >31.4%, gain >8.5 dB, and POUT,sat >13.3 dBm across 24-32.5 GHz, with peak PAE of 40.2% at 26 GHz. The PA shows good linearity with 16-QAM LTE 250 MHz modulated signal input, obtaining ACLR1 of -38.6/-37.3 dBc at 26 GHz with POUT,avg of 6.4 dBm. The PA is also robust against variation in bias VB = 0.83-0.85 V and supply VCC = 1.0-1.4 V and can be applicable toward multi-band 5G applications.