E. Kruijff, Alexander Marquardt, Christina Trepkowski, R. Lindeman, André Hinkenjann, Jens Maiero, B. Riecke
{"title":"On Your Feet!: Enhancing Vection in Leaning-Based Interfaces through Multisensory Stimuli","authors":"E. Kruijff, Alexander Marquardt, Christina Trepkowski, R. Lindeman, André Hinkenjann, Jens Maiero, B. Riecke","doi":"10.1145/2983310.2985759","DOIUrl":null,"url":null,"abstract":"When navigating larger virtual environments and computer games, natural walking is often unfeasible. Here, we investigate how alternatives such as joystick- or leaning-based locomotion interfaces (\"human joystick\") can be enhanced by adding walking-related cues following a sensory substitution approach. Using a custom-designed foot haptics system and evaluating it in a multi-part study, we show that adding walking related auditory cues (footstep sounds), visual cues (simulating bobbing head-motions from walking), and vibrotactile cues (via vibrotactile transducers and bass-shakers under participants' feet) could all enhance participants' sensation of self-motion (vection) and involement/presence. These benefits occurred similarly for seated joystick and standing leaning locomotion. Footstep sounds and vibrotactile cues also enhanced participants' self-reported ability to judge self-motion velocities and distances traveled. Compared to seated joystick control, standing leaning enhanced self-motion sensations. Combining standing leaning with a minimal walking-in-place procedure showed no benefits and reduced usability, though. Together, results highlight the potential of incorporating walking-related auditory, visual, and vibrotactile cues for improving user experience and self-motion perception in applications such as virtual reality, gaming, and tele-presence.","PeriodicalId":185819,"journal":{"name":"Proceedings of the 2016 Symposium on Spatial User Interaction","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Symposium on Spatial User Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983310.2985759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79
Abstract
When navigating larger virtual environments and computer games, natural walking is often unfeasible. Here, we investigate how alternatives such as joystick- or leaning-based locomotion interfaces ("human joystick") can be enhanced by adding walking-related cues following a sensory substitution approach. Using a custom-designed foot haptics system and evaluating it in a multi-part study, we show that adding walking related auditory cues (footstep sounds), visual cues (simulating bobbing head-motions from walking), and vibrotactile cues (via vibrotactile transducers and bass-shakers under participants' feet) could all enhance participants' sensation of self-motion (vection) and involement/presence. These benefits occurred similarly for seated joystick and standing leaning locomotion. Footstep sounds and vibrotactile cues also enhanced participants' self-reported ability to judge self-motion velocities and distances traveled. Compared to seated joystick control, standing leaning enhanced self-motion sensations. Combining standing leaning with a minimal walking-in-place procedure showed no benefits and reduced usability, though. Together, results highlight the potential of incorporating walking-related auditory, visual, and vibrotactile cues for improving user experience and self-motion perception in applications such as virtual reality, gaming, and tele-presence.