A. Athukorala, Nipuna Ranasinghe, Kosala Herath, P. Jayasekara, T. Lalitharatne
{"title":"Scalable Autonomous Agronomical Smartbot","authors":"A. Athukorala, Nipuna Ranasinghe, Kosala Herath, P. Jayasekara, T. Lalitharatne","doi":"10.1109/MESA.2018.8449202","DOIUrl":null,"url":null,"abstract":"Personal and medium scale farming has been showing a downward trend throughout the past few decades. Individuals are demotivated to engage in farming activities, due to lack of time, and the higher efficiency in large-scale farming. However, there is a significant health concern arising from the consumption of these products, as they are grown using artificial fertilizers and contain residues of insecticides and pesticides. Automation can motivate personal and medium scale farming, through cutting down the time requirements for farming and by increasing the farming efficiency. Our solution - Scalable Autonomous Agronomical Smartbot (SAASbot) aims at automating farming activities (planting seeds, watering, fertilizing, weed removal) while providing a scalable robotic platform for personal to medium scale farming. In this paper, design and implementation of the SASSBot and testing and validation of the system are presented.","PeriodicalId":138936,"journal":{"name":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2018.8449202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Personal and medium scale farming has been showing a downward trend throughout the past few decades. Individuals are demotivated to engage in farming activities, due to lack of time, and the higher efficiency in large-scale farming. However, there is a significant health concern arising from the consumption of these products, as they are grown using artificial fertilizers and contain residues of insecticides and pesticides. Automation can motivate personal and medium scale farming, through cutting down the time requirements for farming and by increasing the farming efficiency. Our solution - Scalable Autonomous Agronomical Smartbot (SAASbot) aims at automating farming activities (planting seeds, watering, fertilizing, weed removal) while providing a scalable robotic platform for personal to medium scale farming. In this paper, design and implementation of the SASSBot and testing and validation of the system are presented.