{"title":"Deep Learning based Pedestrian Detection at all Light Conditions","authors":"Koti Naga Renu Chebrolu, P. Kumar","doi":"10.1109/ICCSP.2019.8698101","DOIUrl":null,"url":null,"abstract":"Multispectral pedestrian detection is becoming increasingly important in the field of computer vision due to its applications in driver assistance, surveillance, and monitoring. In this paper, we propose a brightness aware model for pedestrian detection using deep learning. A novel brightness aware mechanism depicts various illumination conditions, so as to enable prediction of day/ night scenario. Based on the detection of the brightness aware mechanism, a color or thermal model is used to detect pedestrians under day or night conditions respectively. The proposed method trained on FLIR-ADAS Thermal dataset and PASCAL VOC Color dataset, has achieved a mAP of ‘81.27%’, which outperforms the current state of the art.","PeriodicalId":194369,"journal":{"name":"2019 International Conference on Communication and Signal Processing (ICCSP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2019.8698101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Multispectral pedestrian detection is becoming increasingly important in the field of computer vision due to its applications in driver assistance, surveillance, and monitoring. In this paper, we propose a brightness aware model for pedestrian detection using deep learning. A novel brightness aware mechanism depicts various illumination conditions, so as to enable prediction of day/ night scenario. Based on the detection of the brightness aware mechanism, a color or thermal model is used to detect pedestrians under day or night conditions respectively. The proposed method trained on FLIR-ADAS Thermal dataset and PASCAL VOC Color dataset, has achieved a mAP of ‘81.27%’, which outperforms the current state of the art.