Optimizing a FPGA-based neural accelerator for small IoT devices

Seongmin Hong, Inho Lee, Yongjun Park
{"title":"Optimizing a FPGA-based neural accelerator for small IoT devices","authors":"Seongmin Hong, Inho Lee, Yongjun Park","doi":"10.1109/isocc.2017.8368903","DOIUrl":null,"url":null,"abstract":"As neural networks have been widely used for machine-learning algorithms such as image recognition, to design efficient neural accelerators has recently become more important. However, designing neural accelerators is generally difficult because of their high memory storage requirement. In this paper, we propose an area-and-power efficient neural accelerator for small IoT devices, using 4-bit fixed-point weights through quantization technique. The proposed neural accelerator is trained through the TensorFlow infrastructure and the weight data is optimized in order to reduce the overhead of high weight memory requirement. Our FPGA-based design achieves 97.44% accuracy with MNIST 10,000 test images.","PeriodicalId":413646,"journal":{"name":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isocc.2017.8368903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As neural networks have been widely used for machine-learning algorithms such as image recognition, to design efficient neural accelerators has recently become more important. However, designing neural accelerators is generally difficult because of their high memory storage requirement. In this paper, we propose an area-and-power efficient neural accelerator for small IoT devices, using 4-bit fixed-point weights through quantization technique. The proposed neural accelerator is trained through the TensorFlow infrastructure and the weight data is optimized in order to reduce the overhead of high weight memory requirement. Our FPGA-based design achieves 97.44% accuracy with MNIST 10,000 test images.
优化基于fpga的小型物联网设备神经加速器
随着神经网络被广泛应用于图像识别等机器学习算法,设计高效的神经加速器变得越来越重要。然而,设计神经加速器通常是困难的,因为它们的内存存储要求很高。在本文中,我们提出了一种用于小型物联网设备的面积和功率高效神经加速器,通过量化技术使用4位定点权重。该神经加速器通过TensorFlow基础架构进行训练,并对权重数据进行优化,以减少高权重内存要求的开销。我们基于fpga的设计在MNIST 10,000个测试图像中达到97.44%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信