Solving the rectangular packing problem by an adaptive GA based on sequence-pair

Koichi Hatta, S. Wakabayashi, T. Koide
{"title":"Solving the rectangular packing problem by an adaptive GA based on sequence-pair","authors":"Koichi Hatta, S. Wakabayashi, T. Koide","doi":"10.1109/ASPDAC.1999.759990","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a genetic algorithm (GA) to solve the rectangular packing problem (RP), in which the sequence-pair representation is adopted as the coding scheme of each chromosome. New genetic operators for RP are presented to explore the search space efficiently. The proposed GA has an adaptive strategy which dynamically selects an appropriate genetic operator during the GA execution depending on the state of an individual. Experimental results show the effectiveness of our adaptive genetic algorithm compared to simulated annealing (SA).","PeriodicalId":201352,"journal":{"name":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.1999.759990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper, we propose a genetic algorithm (GA) to solve the rectangular packing problem (RP), in which the sequence-pair representation is adopted as the coding scheme of each chromosome. New genetic operators for RP are presented to explore the search space efficiently. The proposed GA has an adaptive strategy which dynamically selects an appropriate genetic operator during the GA execution depending on the state of an individual. Experimental results show the effectiveness of our adaptive genetic algorithm compared to simulated annealing (SA).
基于序列对的自适应遗传算法求解矩形装箱问题
本文提出了一种求解矩形装箱问题的遗传算法(GA),该算法采用序列对表示作为每条染色体的编码方案。为了有效地探索搜索空间,提出了一种新的RP遗传算子。该遗传算法具有自适应策略,在遗传算法执行过程中根据个体的状态动态选择合适的遗传算子。实验结果表明,自适应遗传算法与模拟退火算法相比是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信