Identification and Evaluation of Discriminative Lexical Features of Malware URL for Real-Time Classification

M. Olalere, Mohd Taufik Abdullah, R. Mahmod, Azizol Abdullah
{"title":"Identification and Evaluation of Discriminative Lexical Features of Malware URL for Real-Time Classification","authors":"M. Olalere, Mohd Taufik Abdullah, R. Mahmod, Azizol Abdullah","doi":"10.1109/ICCCE.2016.31","DOIUrl":null,"url":null,"abstract":"This study identifies and evaluates discriminative lexical features of malware URLs for building a real-time malware URL classification. The lexical features of malware URL are first identified from existing blacklisted malware URLs through manual examination. Feature identification is followed by studying the prevalence of these features on newly collected malware URLs through empirical analysis. Our empirical analysis revealed that attackers follow the same pattern in crafting malware URL. To evaluate the performance and effectiveness of these features, we applied a Support Vector Machine (SVM) classification algorithm on a dataset comprising of benign and malware URLs. By applying the WEKA data mining tool on our trained dataset, a 96.95 % accuracy was achieved with a low False Negative Rate (FNR) of 0.018 and a moderate False Positive Rate (FPR) of 0.046.","PeriodicalId":360454,"journal":{"name":"2016 International Conference on Computer and Communication Engineering (ICCCE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer and Communication Engineering (ICCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCE.2016.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This study identifies and evaluates discriminative lexical features of malware URLs for building a real-time malware URL classification. The lexical features of malware URL are first identified from existing blacklisted malware URLs through manual examination. Feature identification is followed by studying the prevalence of these features on newly collected malware URLs through empirical analysis. Our empirical analysis revealed that attackers follow the same pattern in crafting malware URL. To evaluate the performance and effectiveness of these features, we applied a Support Vector Machine (SVM) classification algorithm on a dataset comprising of benign and malware URLs. By applying the WEKA data mining tool on our trained dataset, a 96.95 % accuracy was achieved with a low False Negative Rate (FNR) of 0.018 and a moderate False Positive Rate (FPR) of 0.046.
恶意软件URL实时分类的判别词法特征识别与评价
本研究识别和评估恶意软件URL的判别词法特征,用于构建实时恶意软件URL分类。恶意URL的词法特征首先通过人工检测从已有的黑名单恶意URL中识别出来。特征识别之后,通过实证分析研究这些特征在新收集的恶意url上的流行程度。我们的实证分析显示,攻击者在制作恶意软件URL时遵循相同的模式。为了评估这些特征的性能和有效性,我们在包含良性和恶意url的数据集上应用了支持向量机(SVM)分类算法。通过在我们的训练数据集上应用WEKA数据挖掘工具,准确率达到96.95%,假阴性率(FNR)为0.018,假阳性率(FPR)为0.046。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信