Pengaruh Ekstrapolasi Richardson Terhadap Keakuratan Solusi Numerik Persamaan Konduksi Panas

Rofila El maghfiroh
{"title":"Pengaruh Ekstrapolasi Richardson Terhadap Keakuratan Solusi Numerik Persamaan Konduksi Panas","authors":"Rofila El maghfiroh","doi":"10.30598/tensorvol1iss2pp57-63","DOIUrl":null,"url":null,"abstract":"The heat conduction equation is a parabolic differential equation and a type of second-order linear partial differential equation. By applying the finite difference scheme in the Crank-Nicolson method, the numerical solution of the heat conduction equation can be calculated. Obtaining numerical solutions with a high level of accuracy, Richardson extrapolation is required. The Crank-Nicolson approach scheme has a high level of accuracy, because the gap between numerical and analytical solutions is very small. Richardson extrapolation greatly influences the accuracy of numerical solutions, because the gap between analytical solution and numerical solutions with Richardson extrapolation is smaller than disparity in numerical solutions without Richardson extrapolation.","PeriodicalId":294430,"journal":{"name":"Tensor: Pure and Applied Mathematics Journal","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tensor: Pure and Applied Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30598/tensorvol1iss2pp57-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The heat conduction equation is a parabolic differential equation and a type of second-order linear partial differential equation. By applying the finite difference scheme in the Crank-Nicolson method, the numerical solution of the heat conduction equation can be calculated. Obtaining numerical solutions with a high level of accuracy, Richardson extrapolation is required. The Crank-Nicolson approach scheme has a high level of accuracy, because the gap between numerical and analytical solutions is very small. Richardson extrapolation greatly influences the accuracy of numerical solutions, because the gap between analytical solution and numerical solutions with Richardson extrapolation is smaller than disparity in numerical solutions without Richardson extrapolation.
理查森对数字方程传导方程的准确性影响
热传导方程是抛物型微分方程,是一类二阶线性偏微分方程。采用Crank-Nicolson方法中的有限差分格式,可以计算出热传导方程的数值解。获得数值解与高水平的精度,理查德森外推是必需的。Crank-Nicolson方法方案具有很高的精度,因为数值解和解析解之间的差距非常小。Richardson外推法对数值解的精度影响很大,因为采用Richardson外推法的解析解与数值解之间的差距小于不采用Richardson外推法的数值解之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信