Implementation of Logical and Memory Functions with Memristor Cellular Nonlinear Networks

A. Ascoli, I. Messaris, A. S. Demirkol, R. Tetzlaff, L. Chua, D. Biolek, V. Biolková, Z. Kolka
{"title":"Implementation of Logical and Memory Functions with Memristor Cellular Nonlinear Networks","authors":"A. Ascoli, I. Messaris, A. S. Demirkol, R. Tetzlaff, L. Chua, D. Biolek, V. Biolková, Z. Kolka","doi":"10.1109/ECCTD49232.2020.9218420","DOIUrl":null,"url":null,"abstract":"The peculiar combined capability of nonvolatile resistance switching memories to store and process data within a common nanoscale physical medium allows to implement disruptive mem-computing paradigms in hybrid circuits leveraging the compatibility of CMOS and memristive technologies. This may pave the way toward the future development of minaturized, lightweight, ultra-dense, high-speed and low-power universal memcomputers with sensing functionality on board. Since the availability of technical products of this kind would respond to the current demands of the Internet-of-Things industry, it is timely to investigate the functionalities and limitations of memristive memcomputing structures, such as those arranged in cellular bio-inspired architectures. The adoption of memristors in circuit design brings new life to nonlinear system theory, since standard analysis and synthesis techniques from linear system theory are no longer applicable for the investigation of highly-nonlinear electronic systems. This paper demonstrates how the use of standard and novel concepts from nonlinear system theory allow to design a Memristor Cellular Nonlinear Network for the execution of pixel-wise logical boolean functions on binary images, and the concurrent storage of input or output data into the memristive memory bank, providing clear evidence for the truly mem-computing character of its memristor-centered signal processing paradigm.","PeriodicalId":336302,"journal":{"name":"2020 European Conference on Circuit Theory and Design (ECCTD)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD49232.2020.9218420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The peculiar combined capability of nonvolatile resistance switching memories to store and process data within a common nanoscale physical medium allows to implement disruptive mem-computing paradigms in hybrid circuits leveraging the compatibility of CMOS and memristive technologies. This may pave the way toward the future development of minaturized, lightweight, ultra-dense, high-speed and low-power universal memcomputers with sensing functionality on board. Since the availability of technical products of this kind would respond to the current demands of the Internet-of-Things industry, it is timely to investigate the functionalities and limitations of memristive memcomputing structures, such as those arranged in cellular bio-inspired architectures. The adoption of memristors in circuit design brings new life to nonlinear system theory, since standard analysis and synthesis techniques from linear system theory are no longer applicable for the investigation of highly-nonlinear electronic systems. This paper demonstrates how the use of standard and novel concepts from nonlinear system theory allow to design a Memristor Cellular Nonlinear Network for the execution of pixel-wise logical boolean functions on binary images, and the concurrent storage of input or output data into the memristive memory bank, providing clear evidence for the truly mem-computing character of its memristor-centered signal processing paradigm.
用忆阻器细胞非线性网络实现逻辑和记忆功能
非易失性电阻开关存储器在普通纳米级物理介质中存储和处理数据的特殊组合能力允许在利用CMOS和记忆技术的兼容性的混合电路中实现颠覆性memm计算范式。这可能为未来具有机载传感功能的小型化、轻量化、超密度、高速和低功耗通用memcomputer的发展铺平道路。由于此类技术产品的可用性将响应当前物联网行业的需求,因此研究忆忆式忆计算结构的功能和局限性是及时的,例如那些安排在细胞生物启发架构中的忆忆式忆计算结构。在电路设计中采用忆阻器给非线性系统理论带来了新的生命,因为线性系统理论的标准分析和综合技术已不再适用于研究高度非线性的电子系统。本文演示了如何使用非线性系统理论中的标准和新颖概念来设计一个忆阻器细胞非线性网络,用于在二进制图像上执行逐像素逻辑布尔函数,并将输入或输出数据并发存储到忆阻存储器中,为其以忆阻器为中心的信号处理范式的真正memm计算特性提供了明确的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信