Robot-supervised Learning of Crop Row Segmentation*

Marianne Bakken, Vignesh R. Ponnambalam, R. Moore, J. G. Gjevestad, P. From
{"title":"Robot-supervised Learning of Crop Row Segmentation*","authors":"Marianne Bakken, Vignesh R. Ponnambalam, R. Moore, J. G. Gjevestad, P. From","doi":"10.1109/ICRA48506.2021.9560815","DOIUrl":null,"url":null,"abstract":"We propose an approach for robot-supervised learning that automates label generation for semantic segmentation with Convolutional Neural Networks (CNNs) for crop row detection in a field. Using a training robot equipped with RTK GNSS and RGB camera, we train a neural network that can later be used for pure vision-based navigation. We test our approach on an agri-robot in a strawberry field and successfully train crop row segmentation without any hand-drawn image labels. Our main finding is that the resulting segmentation output of the CNN shows better performance than the noisy labels it was trained on. Finally, we conduct open-loop field trials with our agri-robot and show that row-following based on the segmentation result is accurate enough for closed-loop guidance. We conclude that training with noisy segmentation labels is a promising approach for learning vision-based crop row following.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9560815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose an approach for robot-supervised learning that automates label generation for semantic segmentation with Convolutional Neural Networks (CNNs) for crop row detection in a field. Using a training robot equipped with RTK GNSS and RGB camera, we train a neural network that can later be used for pure vision-based navigation. We test our approach on an agri-robot in a strawberry field and successfully train crop row segmentation without any hand-drawn image labels. Our main finding is that the resulting segmentation output of the CNN shows better performance than the noisy labels it was trained on. Finally, we conduct open-loop field trials with our agri-robot and show that row-following based on the segmentation result is accurate enough for closed-loop guidance. We conclude that training with noisy segmentation labels is a promising approach for learning vision-based crop row following.
作物行分割的机器人监督学习*
我们提出了一种机器人监督学习方法,该方法使用卷积神经网络(cnn)自动生成用于语义分割的标签,用于田间作物行检测。我们使用配备RTK GNSS和RGB相机的训练机器人训练神经网络,该神经网络可用于纯视觉导航。我们在草莓田的农业机器人上测试了我们的方法,并成功地训练了作物行分割,而没有任何手绘图像标签。我们的主要发现是,CNN的分割输出结果比它所训练的噪声标签表现出更好的性能。最后,我们用我们的农业机器人进行了开环现场试验,并表明基于分割结果的行跟随足够精确,可以进行闭环引导。我们得出结论,使用噪声分割标签进行训练是一种很有前途的学习基于视觉的作物行跟踪的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信