Nicholson K. Koukpaizan, A. Glezer, Marilyn J. Smith
{"title":"Towards Full-Scale Fuselage Drag Reduction Computations using Fluidic Oscillators","authors":"Nicholson K. Koukpaizan, A. Glezer, Marilyn J. Smith","doi":"10.4050/f-0076-2020-16460","DOIUrl":null,"url":null,"abstract":"\n Computations were performed to assess the effect of fluidically-oscillating jets on a ROBIN-mod7 helicopter fuselage. The simulations utilize previously experimentally validated methodologies that rely on a new boundary condition formulation at the actuator throats, based on phase-averaged flow variables, which obviates the need to resolve the internal cavities simultaneously with the outer flow. Predictions of the base flow past the helicopter fuselage were validated against experimental and computational data available in the literature. The fluidic oscillator characteristics were then evaluated at different scales and pressure ratios, and invariant quantities were identified. In the flow control evaluation, flow separation was significantly reduced and, in some cases, suppressed. However, drag reduction was not obtained, indicating the sensitivity of the actuation location and operating conditions to the vehicle design and flight orientation.\n","PeriodicalId":293921,"journal":{"name":"Proceedings of the Vertical Flight Society 76th Annual Forum","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vertical Flight Society 76th Annual Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4050/f-0076-2020-16460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Computations were performed to assess the effect of fluidically-oscillating jets on a ROBIN-mod7 helicopter fuselage. The simulations utilize previously experimentally validated methodologies that rely on a new boundary condition formulation at the actuator throats, based on phase-averaged flow variables, which obviates the need to resolve the internal cavities simultaneously with the outer flow. Predictions of the base flow past the helicopter fuselage were validated against experimental and computational data available in the literature. The fluidic oscillator characteristics were then evaluated at different scales and pressure ratios, and invariant quantities were identified. In the flow control evaluation, flow separation was significantly reduced and, in some cases, suppressed. However, drag reduction was not obtained, indicating the sensitivity of the actuation location and operating conditions to the vehicle design and flight orientation.