Predicting remaining discharge time of a Lithium-ion battery by using residual capacity and workload

C. Weng, Shaojun Chen, Jih-Chien Chang
{"title":"Predicting remaining discharge time of a Lithium-ion battery by using residual capacity and workload","authors":"C. Weng, Shaojun Chen, Jih-Chien Chang","doi":"10.1109/ISCE.2013.6570172","DOIUrl":null,"url":null,"abstract":"This paper presents a simple, yet effective model for predicting the remaining discharge time of a Lithium-ion battery. It uses workload and residual capacity to be discharged as parameters to estimate the remaining discharge time. After comparing batteries from two manufacturers of five different types, the differences between observations of the remaining discharge time and that of our model are all within 1%. This model works for varying workload estimation as well.","PeriodicalId":442380,"journal":{"name":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2013.6570172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a simple, yet effective model for predicting the remaining discharge time of a Lithium-ion battery. It uses workload and residual capacity to be discharged as parameters to estimate the remaining discharge time. After comparing batteries from two manufacturers of five different types, the differences between observations of the remaining discharge time and that of our model are all within 1%. This model works for varying workload estimation as well.
利用剩余容量和工作负荷预测锂离子电池剩余放电时间
本文提出了一个简单而有效的预测锂离子电池剩余放电时间的模型。它以工作量和待放电的剩余容量作为参数来估计剩余放电时间。对比两家厂商五种不同型号的电池,剩余放电时间的观测值与我们模型的观测值的差异都在1%以内。这个模型也适用于不同的工作负载估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信