Visual-Inertial Filtering for Human Walking Quantification

M. Mitjans, Michail Theofanidis, Ashley N. Collimore, Madelaine L. Disney, David M. Levine, L. Awad, Roberto Tron
{"title":"Visual-Inertial Filtering for Human Walking Quantification","authors":"M. Mitjans, Michail Theofanidis, Ashley N. Collimore, Madelaine L. Disney, David M. Levine, L. Awad, Roberto Tron","doi":"10.1109/ICRA48506.2021.9561517","DOIUrl":null,"url":null,"abstract":"We propose a novel system to track human lower-body motion as part of a larger movement assessment system for clinical evaluation. Our system combines multiple wearable Inertial Measurement Unit (IMU) sensors and a single external RGB-D camera. We use a factor graph with a Sliding Window Filter (SWF) formulation that merges 2-D joint data extracted from the RGB images via a Deep Neural Network, raw depth information, raw IMU gyroscope readings, and estimated foot contacts extracted from IMU gyroscope and accelerometer data. For the system, we use an articulated model of human body motion based on differential manifolds. We compare the results of our system against a gold-standard motion capture system and a vision-only alternative. Our proposed system qualitatively presents smoother 3D joint trajectories when compared to noisy depth data, allowing for more realistic gait estimations. At the same time, with respect to the vision-only baseline, it improves the median of the joint trajectories by around 2cm, while considerably reducing outliers by up to 0.6m.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a novel system to track human lower-body motion as part of a larger movement assessment system for clinical evaluation. Our system combines multiple wearable Inertial Measurement Unit (IMU) sensors and a single external RGB-D camera. We use a factor graph with a Sliding Window Filter (SWF) formulation that merges 2-D joint data extracted from the RGB images via a Deep Neural Network, raw depth information, raw IMU gyroscope readings, and estimated foot contacts extracted from IMU gyroscope and accelerometer data. For the system, we use an articulated model of human body motion based on differential manifolds. We compare the results of our system against a gold-standard motion capture system and a vision-only alternative. Our proposed system qualitatively presents smoother 3D joint trajectories when compared to noisy depth data, allowing for more realistic gait estimations. At the same time, with respect to the vision-only baseline, it improves the median of the joint trajectories by around 2cm, while considerably reducing outliers by up to 0.6m.
视觉惯性滤波用于人体步行量化
我们提出了一个新的系统来跟踪人体下半身的运动,作为一个更大的运动评估系统的一部分,用于临床评估。我们的系统结合了多个可穿戴惯性测量单元(IMU)传感器和单个外部RGB-D摄像头。我们使用带有滑动窗口滤波器(SWF)公式的因子图,该因子图合并了通过深度神经网络从RGB图像中提取的二维关节数据、原始深度信息、原始IMU陀螺仪读数以及从IMU陀螺仪和加速度计数据中提取的估计足部接触。对于该系统,我们使用了基于微分流形的人体运动铰接模型。我们将我们的系统的结果与一个黄金标准的运动捕捉系统和一个只有视觉的替代方案进行比较。与噪声深度数据相比,我们提出的系统定性地呈现出更平滑的3D关节轨迹,允许更真实的步态估计。与此同时,相对于仅视觉基线,它将关节轨迹的中位数提高了约2cm,同时将异常值大大降低了0.6m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信