{"title":"Performance Comparison of Open-Circuit Voltage Modelling of Li-ion Batteries at Different C-Rates","authors":"Prarthana Pillai, James Nguyen, B. Balasingam","doi":"10.1109/ITEC55900.2023.10187059","DOIUrl":null,"url":null,"abstract":"The characterization of a battery to estimate its capacity is a crucial step in open-circuit voltage modelling. The battery capacity estimation is essential to determine diagnostic details on the battery and in determining several other battery parameters. Past research has shown that a normalized open-circuit voltage characterization independent of temperature is also dependent on accurate capacity estimation. In most works, the normalized OCV characterization approaches were done at C/30 rates where the entire data collection took approximately 60 hours. The undesirably long data collection process motivated the need to determine the expected accuracy at lower C-rates in realistic conditions. However, little attention was paid in the literature to investigate capacity estimation error at various C-rates. Thus, in this paper, the battery capacity estimation is repeated at seven C-rates: C/2, C/4, C/8, C/16, C/32, C/64 and C/128, to compare their accuracy using data collected from a laboratory-based battery cycler. It was found that with a lower current rate, a maximum of 0.3 Ah error is observed in the charge capacity. An error of 0.16 Ah was observed for the discharge capacity at the lowest C-rate of C/2 A.","PeriodicalId":234784,"journal":{"name":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC55900.2023.10187059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The characterization of a battery to estimate its capacity is a crucial step in open-circuit voltage modelling. The battery capacity estimation is essential to determine diagnostic details on the battery and in determining several other battery parameters. Past research has shown that a normalized open-circuit voltage characterization independent of temperature is also dependent on accurate capacity estimation. In most works, the normalized OCV characterization approaches were done at C/30 rates where the entire data collection took approximately 60 hours. The undesirably long data collection process motivated the need to determine the expected accuracy at lower C-rates in realistic conditions. However, little attention was paid in the literature to investigate capacity estimation error at various C-rates. Thus, in this paper, the battery capacity estimation is repeated at seven C-rates: C/2, C/4, C/8, C/16, C/32, C/64 and C/128, to compare their accuracy using data collected from a laboratory-based battery cycler. It was found that with a lower current rate, a maximum of 0.3 Ah error is observed in the charge capacity. An error of 0.16 Ah was observed for the discharge capacity at the lowest C-rate of C/2 A.