Application of Support Vector Machine to Cognitive Diagnosis

Kuang Zheng, Ding Shuliang, Xu Zhiyong
{"title":"Application of Support Vector Machine to Cognitive Diagnosis","authors":"Kuang Zheng, Ding Shuliang, Xu Zhiyong","doi":"10.1109/APWCS.2010.8","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is applied to the modern educational measurement’s diagnostic classification of 0,1 scoring test, and then comparisons of the classification results with some of the typical cognitive diagnostic classification are made. The results show that using SVM to cognitive diagnostic classification, which only needs a small sample for training, can ensure a high correct classification rate, while required short time to run. This advantage suggests that SVM could be employed to identify attributes behind in items to reduce the labor strength. Experiments show high precision and certain feasibility.","PeriodicalId":354322,"journal":{"name":"2010 Asia-Pacific Conference on Wearable Computing Systems","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Asia-Pacific Conference on Wearable Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWCS.2010.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Support Vector Machine (SVM) is applied to the modern educational measurement’s diagnostic classification of 0,1 scoring test, and then comparisons of the classification results with some of the typical cognitive diagnostic classification are made. The results show that using SVM to cognitive diagnostic classification, which only needs a small sample for training, can ensure a high correct classification rate, while required short time to run. This advantage suggests that SVM could be employed to identify attributes behind in items to reduce the labor strength. Experiments show high precision and certain feasibility.
支持向量机在认知诊断中的应用
将支持向量机(SVM)应用于现代教育测量的0,1计分测验的诊断分类,并将分类结果与一些典型的认知诊断分类进行了比较。结果表明,使用支持向量机进行认知诊断分类,只需要很小的样本进行训练,可以保证较高的分类正确率,同时运行时间短。这一优势表明支持向量机可以用来识别物品背后的属性,以减少劳动强度。实验结果表明,该方法具有较高的精度和一定的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信