{"title":"Run-time voltage hopping for low-power real-time systems","authors":"Seongsoo Lee, T. Sakurai","doi":"10.1145/337292.337785","DOIUrl":null,"url":null,"abstract":"This paper presents a novel run-time dynamic voltage scaling scheme for low-power real-time systems. It employs software feedback control of supply voltage, which is applicable to off-the-shelf processors. It avoids interface problems from variable clock frequency. It provides efficient power reduction by fully exploiting slack time arising from workload variation. Using software analysis environment, the proposed scheme is shown to achieve 80~94% power reduction for typical real-time multimedia applications.","PeriodicalId":237114,"journal":{"name":"Proceedings 37th Design Automation Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"257","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 37th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/337292.337785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 257
Abstract
This paper presents a novel run-time dynamic voltage scaling scheme for low-power real-time systems. It employs software feedback control of supply voltage, which is applicable to off-the-shelf processors. It avoids interface problems from variable clock frequency. It provides efficient power reduction by fully exploiting slack time arising from workload variation. Using software analysis environment, the proposed scheme is shown to achieve 80~94% power reduction for typical real-time multimedia applications.