A Review on Deep Learning UAV Systems for Visual Obstacle Detection in Crop Environments

Alexandra Romero-Lugo, A. Magadán-Salazar, J. Fuentes-Pacheco, R. Pinto-Elías, J. Ruiz-Ascencio
{"title":"A Review on Deep Learning UAV Systems for Visual Obstacle Detection in Crop Environments","authors":"Alexandra Romero-Lugo, A. Magadán-Salazar, J. Fuentes-Pacheco, R. Pinto-Elías, J. Ruiz-Ascencio","doi":"10.1109/ICMEAE55138.2021.00024","DOIUrl":null,"url":null,"abstract":"Nowadays unmanned aerial vehicles (UAV’s) have an important role in Precision Agriculture, due to this it is necessary the autonomous navigation in crop environments. Motivated by the latter, in this paper we present a review on Deep Learning (DL) techniques as a promising alternative for providing real-time obstacle detection and collision avoidance for autonomous UAVs. Furthermore, this article focuses on enumerating the most open challenges for current DL-UAV solutions to allow the navigation at low altitudes in complex crops.","PeriodicalId":188801,"journal":{"name":"2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE55138.2021.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays unmanned aerial vehicles (UAV’s) have an important role in Precision Agriculture, due to this it is necessary the autonomous navigation in crop environments. Motivated by the latter, in this paper we present a review on Deep Learning (DL) techniques as a promising alternative for providing real-time obstacle detection and collision avoidance for autonomous UAVs. Furthermore, this article focuses on enumerating the most open challenges for current DL-UAV solutions to allow the navigation at low altitudes in complex crops.
农作物环境下用于视觉障碍检测的深度学习无人机系统研究进展
当前,无人机在精准农业中发挥着重要的作用,因此需要在作物环境中进行自主导航。在后者的推动下,在本文中,我们对深度学习(DL)技术进行了回顾,该技术是为自主无人机提供实时障碍物检测和避免碰撞的有前途的替代方案。此外,本文重点列举了当前DL-UAV解决方案中最开放的挑战,以允许在复杂作物的低空导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信