{"title":"Further Rao-Blackwellizing an already Rao-Blackwellized algorithm for Jump Markov State Space Systems","authors":"Y. Petetin, F. Desbouvries","doi":"10.1109/ISSPA.2012.6310644","DOIUrl":null,"url":null,"abstract":"Exact Bayesian filtering is impossible in Jump Markov State Space Systems (JMSS), even in the simple linear and Gaussian case. Suboptimal solutions include sequential Monte-Carlo (SMC) algorithms which are indeed popular, and are declined in different versions according to the JMSS considered. In particular, Jump Markov Linear Systems (JMLS) are particular JMSS for which a Rao-Blackwellized (RB) Particle Filter (PF) has been derived. The RBPF solution relies on a combination of PF and Kalman Filtering (KF), and RBPF-based moment estimators outperform purely SMC-based ones when the number of samples tends to infinity. In this paper, we show that it is possible to derive a new RBPF solution, which implements a further RB step in the already RBPF with optimal importance distribution (ID). The new RBPF-based moment estimator outperforms the classical RBPF one whatever the number of particles, at the expense of a reasonable extra computational cost.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Exact Bayesian filtering is impossible in Jump Markov State Space Systems (JMSS), even in the simple linear and Gaussian case. Suboptimal solutions include sequential Monte-Carlo (SMC) algorithms which are indeed popular, and are declined in different versions according to the JMSS considered. In particular, Jump Markov Linear Systems (JMLS) are particular JMSS for which a Rao-Blackwellized (RB) Particle Filter (PF) has been derived. The RBPF solution relies on a combination of PF and Kalman Filtering (KF), and RBPF-based moment estimators outperform purely SMC-based ones when the number of samples tends to infinity. In this paper, we show that it is possible to derive a new RBPF solution, which implements a further RB step in the already RBPF with optimal importance distribution (ID). The new RBPF-based moment estimator outperforms the classical RBPF one whatever the number of particles, at the expense of a reasonable extra computational cost.