{"title":"The impact of thermal energy on cross spectrum PM noise measurements","authors":"Y. Gruson, V. Giordano, U. Rohde, E. Rubiola","doi":"10.1109/FCS.2016.7546809","DOIUrl":null,"url":null,"abstract":"Virtually all commercial instruments for the measurement of the oscillator PM noise make use of the Cross Spectrum method (arXiv:1004.5539 [physics.ins-det], 2010). High sensitivity is achieved by correlation and averaging on two equal channels which measure the same input, and reject the background noise. We show that a systematic error always present if the thermal energy of the input power splitter is not accounted for. Such error can result in noise under estimation up to a few dB in the lowest-noise quartz oscillators, and in a complete nonsense in the case of cryogenic oscillators.","PeriodicalId":122928,"journal":{"name":"2016 IEEE International Frequency Control Symposium (IFCS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2016.7546809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Virtually all commercial instruments for the measurement of the oscillator PM noise make use of the Cross Spectrum method (arXiv:1004.5539 [physics.ins-det], 2010). High sensitivity is achieved by correlation and averaging on two equal channels which measure the same input, and reject the background noise. We show that a systematic error always present if the thermal energy of the input power splitter is not accounted for. Such error can result in noise under estimation up to a few dB in the lowest-noise quartz oscillators, and in a complete nonsense in the case of cryogenic oscillators.