Sentiment Analysis of Using ChatGPT in Education

Mohammad Tubishat, F. Al-Obeidat, Ahmed Shuhaiber
{"title":"Sentiment Analysis of Using ChatGPT in Education","authors":"Mohammad Tubishat, F. Al-Obeidat, Ahmed Shuhaiber","doi":"10.1109/SmartNets58706.2023.10215977","DOIUrl":null,"url":null,"abstract":"This paper presents a study on the use of the Chat Generative Pretrained Transformer (ChatGPT) in education. In this work, we propose a sentiment analysis model of tweets related to the use of the ChatGPT in education. The purpose of this research is to identify common sentiments, topics, and perspectives that are expressed towards ChatGPT in the education field based on the data collected from Twitter. Twitter was used to collect 11830 tweets about the use of ChatGPT in education. Topics and emotions expressed in the tweets were extracted using NLP algorithms and organized into distinct groups. Also, the most frequent words in the positive and negative opinion words are determined. The findings of the paper indicate that most tweets about ChatGPT are either positive or neutral, with a small percentage expressing negative sentiments. In addition, the study analyzes the sentiments expressed in tweets about the employment of ChatGPT in education using four different classifiers: Naive Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF). According to the results, the SVM classifier has the highest accuracy of 81.4 percent.","PeriodicalId":301834,"journal":{"name":"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartNets58706.2023.10215977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a study on the use of the Chat Generative Pretrained Transformer (ChatGPT) in education. In this work, we propose a sentiment analysis model of tweets related to the use of the ChatGPT in education. The purpose of this research is to identify common sentiments, topics, and perspectives that are expressed towards ChatGPT in the education field based on the data collected from Twitter. Twitter was used to collect 11830 tweets about the use of ChatGPT in education. Topics and emotions expressed in the tweets were extracted using NLP algorithms and organized into distinct groups. Also, the most frequent words in the positive and negative opinion words are determined. The findings of the paper indicate that most tweets about ChatGPT are either positive or neutral, with a small percentage expressing negative sentiments. In addition, the study analyzes the sentiments expressed in tweets about the employment of ChatGPT in education using four different classifiers: Naive Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF). According to the results, the SVM classifier has the highest accuracy of 81.4 percent.
ChatGPT在教学中的情感分析
本文介绍了在教育中使用聊天生成预训练转换器(ChatGPT)的研究。在这项工作中,我们提出了一个与ChatGPT在教育中使用相关的推文情感分析模型。本研究的目的是根据从Twitter收集的数据,确定教育领域对ChatGPT表达的共同情感、主题和观点。使用Twitter收集了11830条关于在教育中使用ChatGPT的tweet。使用NLP算法提取推文中表达的主题和情绪,并将其组织成不同的组。同时,确定了肯定意见词和否定意见词中出现频率最高的单词。本文的研究结果表明,大多数关于ChatGPT的推文要么是积极的,要么是中性的,有一小部分人表达了负面情绪。此外,该研究使用四种不同的分类器:朴素贝叶斯(NB)、支持向量机(SVM)、k近邻(KNN)和随机森林(RF),分析了twitter上关于ChatGPT在教育中使用的情绪。结果表明,SVM分类器的准确率最高,达到81.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信