D. Novo, A. Kritikakou, P. Raghavan, L. Perre, J. Huisken, F. Catthoor
{"title":"Ultra low energy Domain Specific Instruction-set Processor for on-line surveillance","authors":"D. Novo, A. Kritikakou, P. Raghavan, L. Perre, J. Huisken, F. Catthoor","doi":"10.1109/SASP.2010.5521151","DOIUrl":null,"url":null,"abstract":"Many signal processing applications demand for highly energy efficient flexible implementations. In this paper, we propose a novel Domain Specific Instruction-set Processor (DSIP) architecture template which is tuned to deploy in the targeted domain of on-line surveillance. The architectur e, when implemented using a 40-nm CMOS standard cell library, executes a representative test vehicle with an energy efficiency of near ly 900 MOPS/mW including instruction and data memor ies. This is about 20 times higher than a state-of-the-ar t low power DSP architecture and less than a factor 2 below a heavily optimized ASIC realization for the same application benchmark.","PeriodicalId":119893,"journal":{"name":"2010 IEEE 8th Symposium on Application Specific Processors (SASP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 8th Symposium on Application Specific Processors (SASP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASP.2010.5521151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Many signal processing applications demand for highly energy efficient flexible implementations. In this paper, we propose a novel Domain Specific Instruction-set Processor (DSIP) architecture template which is tuned to deploy in the targeted domain of on-line surveillance. The architectur e, when implemented using a 40-nm CMOS standard cell library, executes a representative test vehicle with an energy efficiency of near ly 900 MOPS/mW including instruction and data memor ies. This is about 20 times higher than a state-of-the-ar t low power DSP architecture and less than a factor 2 below a heavily optimized ASIC realization for the same application benchmark.