{"title":"Investigation and Mathematical Modelling of Optimized Cutting Parameters for Surface Roughness of EN-8 Alloy Steel","authors":"A. Saraswat, Dipak Kumar","doi":"10.30564/jmmr.v4i2.4094","DOIUrl":null,"url":null,"abstract":"The work done in this work deals with the efficacy of cutting parameters on surface of EN-8 alloy steel. For knowing the optimal effects of cutting parameters response surface methodology was practiced subjected to central composite design matrix. The motive was to introduce an interaction among input parameters, i.e., cutting speed, feed and depth of cut and output parameter, surface roughness. For this, second order response surface model was modeled. The foreseen values obtained were found to be fairly close to observed values, showed that the model could be practiced to forecast the surface roughness on EN-8 within the range of parameter studied. Contours and 3-D plots are generated to forecast the value of surface roughness. It was revealed that surface roughness decreases with increases in cutting speed and it increases with feed. However, there were found negligible or almost no implication of depth of cut on surface roughness whereas feed rate affected the surface roughness most. For lower surface roughness, the optimum values of each one were also evaluated.","PeriodicalId":232294,"journal":{"name":"Journal of Metallic Material Research","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metallic Material Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/jmmr.v4i2.4094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The work done in this work deals with the efficacy of cutting parameters on surface of EN-8 alloy steel. For knowing the optimal effects of cutting parameters response surface methodology was practiced subjected to central composite design matrix. The motive was to introduce an interaction among input parameters, i.e., cutting speed, feed and depth of cut and output parameter, surface roughness. For this, second order response surface model was modeled. The foreseen values obtained were found to be fairly close to observed values, showed that the model could be practiced to forecast the surface roughness on EN-8 within the range of parameter studied. Contours and 3-D plots are generated to forecast the value of surface roughness. It was revealed that surface roughness decreases with increases in cutting speed and it increases with feed. However, there were found negligible or almost no implication of depth of cut on surface roughness whereas feed rate affected the surface roughness most. For lower surface roughness, the optimum values of each one were also evaluated.