Evaluation of quality factors in superconductor microresonators with proximity enhancement

Yong-Chao Tang, O. Benningshof, H. R. Mohebbi, David G. Cory, G. Miao
{"title":"Evaluation of quality factors in superconductor microresonators with proximity enhancement","authors":"Yong-Chao Tang, O. Benningshof, H. R. Mohebbi, David G. Cory, G. Miao","doi":"10.1109/NANO.2014.6968001","DOIUrl":null,"url":null,"abstract":"The quality factor of microstrip line resonators made of 20/50/20 nm Nb/NbN/Nb trilayer films has been calculated as microwave transmission through the cascade of three single layers, and in agreement with experimental data. Each layer is evaluated with an explicit extended Zimmermann expression. The formula is generalized from the standard expression by including electron mean free path and the imaginary part of the gap energy of the material [1]. The quality factor of the microresonator consisting of a 50 nm thick single layer Nb film is also calculated by this compact expression and quantitatively agrees with the measured results as well. The quality factor of the microresonator made of trilayer films is shown to be larger than that of the microresonator with only a single Nb film.","PeriodicalId":367660,"journal":{"name":"14th IEEE International Conference on Nanotechnology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2014.6968001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The quality factor of microstrip line resonators made of 20/50/20 nm Nb/NbN/Nb trilayer films has been calculated as microwave transmission through the cascade of three single layers, and in agreement with experimental data. Each layer is evaluated with an explicit extended Zimmermann expression. The formula is generalized from the standard expression by including electron mean free path and the imaginary part of the gap energy of the material [1]. The quality factor of the microresonator consisting of a 50 nm thick single layer Nb film is also calculated by this compact expression and quantitatively agrees with the measured results as well. The quality factor of the microresonator made of trilayer films is shown to be larger than that of the microresonator with only a single Nb film.
具有接近增强的超导体微谐振器质量因子的评价
本文计算了由20/50/20 nm Nb/NbN/Nb三层薄膜制成的微带线谐振器的质量因子,计算结果与实验数据一致。每一层用显式的扩展Zimmermann表达式求值。在标准表达式的基础上,引入了电子平均自由程和材料间隙能虚部[1],对公式进行了推广。由50 nm厚的单层铌薄膜组成的微谐振腔的质量因子也由该紧凑表达式计算得到,定量结果与实测结果一致。由三层薄膜制成的微谐振器的质量因子比只有一层铌薄膜的微谐振器的质量因子大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信