Data Quality Measures and Data Cleaning for Pattern Analysis Angkot Transportation in Bandung City

Nasy’an Taufiq Al Ghifari, Ary Setijadi Prihatmanto, Rifki Wijaya, Rahadian Yusuf
{"title":"Data Quality Measures and Data Cleaning for Pattern Analysis Angkot Transportation in Bandung City","authors":"Nasy’an Taufiq Al Ghifari, Ary Setijadi Prihatmanto, Rifki Wijaya, Rahadian Yusuf","doi":"10.1109/ICoSTA48221.2020.1570613756","DOIUrl":null,"url":null,"abstract":"Detecting and repairing ‘dirty’ data is one of the perennial challenges in data analytics, and failure to do so can result in inaccurate analytics and unreliable decisions. To detect errors at an early stage and handle them efficiently, it is necessary to determine steps for cleaning and improving data quality. The data used in this study are data collected from previous studies. Data is collected through two sources, namely the Angkot mobile application and the GPS tracker microcontroller module. Some data cleaning tasks here are performed for geospatial data types. This paper provides an overview of data cleaning problems, data quality, cleaning approaches and requirements for public transportation pattern analysis.","PeriodicalId":375166,"journal":{"name":"2020 International Conference on Smart Technology and Applications (ICoSTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Technology and Applications (ICoSTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoSTA48221.2020.1570613756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detecting and repairing ‘dirty’ data is one of the perennial challenges in data analytics, and failure to do so can result in inaccurate analytics and unreliable decisions. To detect errors at an early stage and handle them efficiently, it is necessary to determine steps for cleaning and improving data quality. The data used in this study are data collected from previous studies. Data is collected through two sources, namely the Angkot mobile application and the GPS tracker microcontroller module. Some data cleaning tasks here are performed for geospatial data types. This paper provides an overview of data cleaning problems, data quality, cleaning approaches and requirements for public transportation pattern analysis.
万隆市Angkot交通模式分析的数据质量措施和数据清理
检测和修复“脏”数据是数据分析中长期存在的挑战之一,如果不这样做,可能会导致不准确的分析和不可靠的决策。为了在早期阶段检测错误并有效地处理它们,有必要确定清理和提高数据质量的步骤。本研究使用的数据来自以往的研究。数据通过两个来源收集,即Angkot移动应用程序和GPS跟踪器微控制器模块。这里针对地理空间数据类型执行一些数据清理任务。本文概述了公共交通模式分析的数据清洗问题、数据质量、清洗方法和要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信